
Lecture 13

Goals

� Be able to encode using a convolutional code

� Be able to decode a convolutional code received over a binary symmetric

channel or an additive white Gaussian channel

XIII-1

Convolutional Codes

Convolutional codes are an alternative way of introducing redundancy into the

data stream. They are preferred to block codes in many situations because of

the ease with which soft decision decoding can be performed. They are called

convolutional code because the encoder output can be written as the

convolutional of the encoder input with a generator sequence.

A convolutional code consists of k shift registers of length M or less each. The

n outputs are linear combinations of the contents of the shift registers and the

input. A convolutional code is describe by the memory length M (or constraint

length K � M � 1), the number of input bits k the number of output bits n and

the connections between the shift registers and the outputs.

XIII-2

Example (K=3,M=2, rate 1/2 code)

� �
�

�
� �

�
� �

�
�� �

� � �

Figure 93: Encoder for rate 1/2 constraint length 3 convolutional
code.

XIII-3

00

10

11

01

0/00

1/11

1/10

0/01

1/00

0/10

0/11

1/01

Figure 94: State Diagram for rate 1/2 constraint length 3 convolu-
tional code.

XIII-4



We can describe the sequence of states the encoder passes through in time via

a trellis diagram. This will be useful for decoding purposes.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

11

10

01

00 �
�

�
�

� ��
�
�

�
�

�
�

�
�

�
� �

�
�

�
�

� �

�
�

�

�
�
�

�
�
�

�
�

�
�

�
�

�
� �

�
�

�
�

� �

�
�
�

�
�

�

�
�
�

�
�

�
�

�
�

�
� �

Figure 95: Trellis Diagram for rate 1/2 constraint length 3 convo-
lutional code.

XIII-5

Decoding Convolutional Codes

Consider a state diagram for a particular convolutional code. Let xm be the

sequence representing the state at time m. Let x0 be the initial state of the

process � p � x0 � � 1 � . Later on we will denote the states by the integers

1,2,...,N. Since this is a Markov process we have that

p � xm � 1 � xm � xm	 1 �
 
 
 � x1 � x0 � � p � xm � 1 � xm �

That is, the state at time m � 1 depends only on the state at time m and not any

previous state.

Let wm � � xm � 1 � xm � be the state transition at time m. There is a one-to-one

correspondence between state sequences and transition sequences. By some

mechanism (e.g. a noisy channel) a noisy version � zm � of the state transition

sequence is observed. Based on this noisy version of � wm � we wish to

estimate the state sequence � xm � or the transition sequence wm. Since � wm �

XIII-6

and � xm � contain the same information we have that

p � z � x � � p � z �w �

where z � z0 � z1 �
 
 
 � zM	 1, x � x0 � x1 � 
 
 
 � xM, and w � w0 �
 
 
 � wM	 1. If the
channel is memoryless then we have that

p � z �w � �

M	 1

∏
m 0

p � zm �wm �

So given an observation z find the state sequence x for which the a posteriori
probability p � x � z � is largest. This minimizes the probability that we chose the
wrong sequence.

Thus the optimum (minimum sequence error probability) decoder chooses x
which maximizes p � x � z � : i.e

x̂ � argmaxx p � x � z �

� argmaxx p � x � z �

� argminx ��� log p � x � z � �

XIII-7

� argminx ��� log p � z � x � p � x � �

Using the memoryless property of the channel we obtain

p � z � x � �

M	 1

∏
m 0

p � zk �wm �

and using the Markov property of the state sequence

p � x � �
�

M	 1

∏
m 0

p � xm � 1 � xm �
�

p � x0 �

Define λ � wm � as follows:

λ � wm � � � ln p � xm � 1 � xm � � ln p � zm �wm �

Then

x̂ � argminx �

M	 1

∑
m 0

λ � wm � �

This problem formulation leads to a recursive solution. The recursive solution

XIII-8



is called the Viterbi Algorithm by communication engineers and is a form of

Dynamic Programming as studied by control engineers. They are really the

same though.

XIII-9

VITERBI ALGORITHM

Let Γ � xm � be the length (optimization criteria) of the shortest (optimum) path

to state xm at time m. Let x̂ � xm � be the shortest path to state xm at time m. Let

Γ̂ � xm � 1 � xm � be the length of the path to state xm � 1 at time m that goes through

state xm at time m.

Then the algorithm works as follows.

Storage Initialization

m, time index, m � 0,

x̂ � xm � � xm� � 1 � 2 �
 
 
 � M � o x̂ � x0 � � x0

Γ � xm � � xm� � 1 � 2 �
 
 
 � M � x̂ � xm � arbitrary, m �� x0

Γ � x0 � � 0

Γ � xm � � ∞, m �� 0

XIII-10

Recursion

Γ̂ � xm � 1 � xm � � Γ � xm � � λ � wm �

Γ � xm � 1 � � minxm Γ̂ � xm � 1 � xm � for each xm � 1

Let x̂m � xm � 1 � � argminxm
Γ̂ � xm � 1 � xm � . x̂ � xm � 1 � � x̂ � xm � x̂m � � xm � 1 �

XIII-11

Justification:

Basically we are interested in finding the shortest length path through the

trellis. At time m we find the shortest length paths to each of the possible

states at time m by computing all possible ways of getting to state xm � u from

a state at time m� 1. If the shortest path (denoted by x̂ � u � ) to get to xm � u at

time m goes through state xm	 1 � v at time m� 1 (i.e. x̂ � u � � x̂ � v � � u) then the

corresponding path x̂ � v � to state xm	 1 � v must be the shortest path to state v

at time m� 1 since if there was a shorter path, say x̃ � v � , to state v at time m� 1

then the path x̃ � v � � u to state u at time m that used this shorter path to state v at

time m� 1 would be shorter then what we assumed was the shortest path).

Stated another way if the shortest way of getting to state u at time m is by

going through state v at time m� 1 then the path used to get to state v at time

m� 1 must be the shortest of all paths to state v at time m� 1.

XIII-12



11 01 10 10 01 10 00 01 11 00

�
�

�
�

�
�

�
�

11

10

01

00 �
�

�
�

� �

2

0

XIII-13

11 01 10 10 01 10 00 01 11 00

�
�

�
�

�
�

�
�

�
�

�
�

11

10

01

00 �
�

�
�

� � �
�
�

�
�

�
�

�
�

�
� �

2

3

0

3

XIII-14

11 01 10 10 01 10 00 01 11 00

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

11

10

01

00 �
�

�
�

� � �
�
�

�
�

�
�

�
�

�
� �

�
�

�
�

� �

�
�

�

�
�
�

�
�

�

3

1

2

1

XIII-15

11 01 10 10 01 10 00 01 11 00

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

11

10

01

00 �
�

�
�

� � �
�
�

�
�

�
�

�
�

�
� �

�
�

�
�

� �

�
�

�

�
�
�

�
�

�
�

�
�

�
� �

�
�
�

�
�

�
�

�
�

�
� �

1

2

3

2

XIII-16



11 01 10 10 01 10 00 01 11 00

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

11

10

01

00 �
�

�
�

� � �
�
�

�
�

�
�

� �
�

�
�

�
�
�

�
�

�
�

�
�

�
� �

�
�
�

�
�

�
�

�
�

�
� � �
�
�

�
�

�
�

� �

1

3

2

3

XIII-17

11 01 10 10 01 10 00 01 11 00

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

11

10

01

00 �
�

�
�

� � �
�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

� ��
�
�

�
�

�
�

� �
�

�
�

�
� �

�
�

�

�
�
�

�
�

�

3

3

1

3

XIII-18

11 01 10 10 01 10 00 01 11 00

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

11

10

01

00 �
�

�
�

� � �
�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

� ��
�
�

�
�

�
�

� �
�

�
�

�
� �

�
�

�

�
�
�

�
�

�
�

�
�

�
� �

�
�
�

�
�

�

�
�
�

�
�

�

4

1

4

3

XIII-19

11 01 10 10 01 10 00 01 11 00

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

11

10

01

00 �
�

�
�

� � �
�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

� ��
�
�

�
�

�
�

� �
�

�
�

�
� �

�
�

�

�
�
�

�
�

�
�

�
�

�
� �

�
�
�

�
�

�

�
�
�

�
�

�
�

�
�

�
�
�

�
�

�
�

� �

3

4

1

4

XIII-20



11 01 10 10 01 10 00 01 11 00

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

11

10

01

00 �
�

�
�

� � �
�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

� ��
�
�

�
�

�
�

� �

�
�
�

�
�
�

�
�

�
�

�
�

�
�
�

�
�

�
�

� �
�

�
�

�
� �

�
�
�

�
�

�

4

3

4

1

XIII-21

11 01 10 10 01 10 00 11 00 00

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

11

10

01

00 �
�

�
�

� � �
�
� �

�
�

�
�

� �
�

�
�

� � � �
�

�
�

�

�
�
�

�
�

�
�

� �

�
�
�

�
�

� �
�
�

�
�

�
�

�
�

�
� �

4

3

4

1

XIII-22

Error Bounds for Convolutional Codes

The performance of convolutional codes can be upper bounded by

Pb �

∞

∑
l d f ree

wlD
l

where wl is the average number of nonzero information bits on paths with

Hamming distance l and D is a parameter that depends only on the channel.

usually the summation in the upper bound is truncated to some finite number

of terms.

XIII-23

Example 1

Binary Symmetric Channel crossover probability p.

D � 2 � p � 1� p �
XIII-24



Example 2

Additive White Gaussian Noise channel

D � e
	 E

�

N0


XIII-25

Performance Examples

Generally hard decisions requires 2dB more signal energy than soft decisions

for the same bit error probability. Also soft decisions is only about 0.25dB

better than 8 level quantization.

XIII-26

Standard codes:

Example Convolutional Code 1:

Constraint length 7, memory 6, 64 state decoder, rate 1/2 has the following

upper bound.

Pb � 36D10 � 211D12 � 1404D14 � 11633D16 � � � �

There is a chip made by Qualcomm and Stanford Telecommunications that

operates at data rates on the order of 10Mbits/second that will do encoding

and decoding.

Example Convolutional Code 2: Constraint length 9, memory 8, 256 state

decoder, rate 1/2

Pb � 33D12 � 281D14 � 2179D16 � 15035D18 � � � �

XIII-27

Example Convolutional Code 3: Constraint length 9, memory 8, 256 state

decoder, rate 1/3

Pb � 11D18 � 32D20 � 195D22 � 564D24 � 1473D26 � � � �

XIII-28



Example (K=3,M=2, rate 1/2 code)

� �
�

�
� �

�
� �

�
�� �

� � �
This code has d f of 5. The weight enumerator polynomial is

w � D � � D5

� 1� 2D � 2

� D5 � 4D6 � 12D7 � 32D8 � � � �
XIII-29

Example (K � 7 � M � 6 � rate 1/2 code)

� � � � � �

�
�

� �
�

� �
�

� �
�

� �

�
�� �
�� �
�� �
�� �

� � � � � �

This code has d f of 10. The weight enumerator polynomial for determining
the bit error probability is given by

w � D � � 36D10 � 211D12 � 1404D14 � 11633D16 � 77433D18

� 502690D20 � 3322763D22 � 21292910D24

XIII-30

� 134365911D26 � 843425871D28 � � � �

We can upper bound the bit error probability by

Pb � ∑
j

w jP2 � j � � ∑
j

w jD
j � w � D �

The first bound is the union bound. It is impossible to exactly evaluate this

bound because there are an infinite number of terms in the summation.

Dropping all but the first N terms gives an approximation. It may no longer be

an upper bound though. If the weight enumerator is known we can get

arbitrarily close to the union bound and still get a bound as follows.

Pb � ∑
j

w jP2 � j � �

N

∑
j d f

w jP2 � j � �

∞

∑
j N � 1

w jP2 � j �

�

N

∑
j d f

w jP2 � j � �

∞

∑
j N � 1

w jD
j

XIII-31

�

N

∑
j d f

w j � P2 � j � � D j � �

∞

∑
j d f

w jD
j

�

N

∑
j d f

w j � P2 � j � � D j � � w � D �

The second term is the Union-Bhattacharyya (U-B) bound. The first term is

clearly less than zero, so we get something that is tighter than the U-B bound.

By choosing N sufficiently large we can sometimes get significant

improvements over the U-B bound.

XIII-32



0 1 2 3 4 5 6 7 8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

P
e,

b

Simulation 

Upper Bound 

Lower Bound 

Figure 96: Error probability of constraint length 3 convolutional
codes on an additive white Gaussian noise channel with soft deci-
sions decoding (upperbound, simulation and lower bound).

XIII-33

0 1 2 3 4 5 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

P
b

Figure 97: Error probability of constraint length 4 convolutional
codes on an additive white Gaussian noise channel with soft deci-
sions decoding (upperbound, simulation).

XIII-34

0 1 2 3 4 5 6 7 8 9 10
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

EbN0(dB)

B
it 

E
rr

or
 R

at
e

Simulation

Union Bound

Uncoded

Figure 98: Error probability of constraint length 7 convolutional
codes on an additive white Gaussian noise channel with soft deci-
sions decoding (upperbound, simulation).

XIII-35

1086420
10 -10

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

U pper Bounds on Bit Error Probabilityfor Constraint Length 7, 

R ate 1/2 Convolutional Code

Eb/N0 

(dB)

P
e
,b

Hard Decisions

Soft Decisions

Figure 99: Error Probability of Constraint Length 7 Convolutional
Codes on an Additive White Gaussian Noise Channel (hard and
soft decisions).

XIII-36



Bit Error Probability (Bound) for Constraint 
Length 9 Rate 1/3 Convolutional Code 

Eb/N 0 (dB)

B
it
 E
r
r
o
r
 P
r
o
b
a
b
il
it
y

1086420
10 -10

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Hard Decisions

Soft Decisions

Figure 100: Error Probability of Constraint Length 9 Convolu-
tional Codes on an Additive White Gaussian Noise Channel (hard
and soft decisions).

XIII-37

Convolutional Decoder p � 0� 05

0 5 10 15 20 25 30 35

11

10

01

00

time

st
at

e

8

7

6

7

XIII-38

Convolutional Decoder p � 0� 1

0 5 10 15 20 25 30 35

11

10

01

00

time

st
at

e

8

7

6

7

XIII-39

Convolutional Decoder p � 0� 2

0 5 10 15 20 25 30 35

11

10

01

00

time

st
at

e
8

7

6

7

XIII-40


