
Lecture 4

Goals:

� Be able to determine bandwidth of digital signals

� Be able to convert a signal from baseband to passband and back
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Bandwidth of Digital Data Signals

A digital data signal is modeled as a random process Y � t � which is a stationary
(wide sense) version of a process X � t � ;

Y � t � � X � t� U �

where U is a random variable needed inorder to make Y � t � wide sense
stationary. In many digital communication systems X � t � is an infinite
sequence j pulses or waveforms i.e.

X � t � �
∞

∑
�� � ∞

b � x � t� � T �	�

In this case if U is uniformly distributed between 0 and T then Y � t � is a wide
snese stationary random process. We desire then to compute the auto
correlation of Y � t � and also the spectrum of Y � t � . Assume that 
 b � � ∞

�� � ∞ is a
sequences of i.i.d. random variables with zero mean and variance σ2 (e.g.
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P 
 b � � � 1 � � 1 � 2 P 
 b � � � 1 � � 1 � 2). Also assume U and b � are
independent.

Claim:

RY � τ � � σ2

T

∞

� ∞
x � t � x � t � τ � dt

SY � ω � � 1
T � F � ω � �

2 where F � ω � � F 
 x � t � �

Derivation: For any t and τ

E � Y � t � Y � t � τ � � � E
∞

∑

�� � ∞
b � x � t� � T� U �

∞

∑
m� � ∞

bmx � t � τ� mT� U �

�

∞

∑

�� � ∞

∞

∑
m� � ∞

E 
 b � bm �� �� �

δ 	 m� 


σ2 	� m
0 	 �� m

E � x � t� � T� U � x � t � τ� mT� U � �

�

∞

∑

�� � ∞
σ2E � x � t� � T� U � x � t � τ� � T� U � �
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�

∞

∑

�� � ∞
σ2 1

T

T

u� 0
x � t� � T� u � x � t � τ� � T� u � du

� 1
T

∞

∑

�� � ∞
σ2 � � � 1 � T

� T
x � t� v � x � t � τ� v � dv � v � � T � u dv � du �

� σ2

T

∞

� ∞
x � t� v � x � t � τ� v � dv � w � t� v �

� σ2

T

∞
� ∞

x � w � x � w � τ � dw � σ2

T

∞

� ∞
x � t � x � t � τ � dt

Thus Y � t � is wide sense stationary with

RY � τ � � σ2

T

∞
� ∞

x � t � x � t � τ � dt

Now let f1 � t � � x � t � f2 � t � � x �� t � then

f1 � f2 � τ � �

∞

� ∞
f1 � t � f2 � τ� t � dt �

∞
� ∞

x � t � x � t� τ � dt
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�

∞

� ∞
x � t � τ � x � t � dt

So

RY � τ � � σ2

T � f1 � f2 � � τ �

SY � ω � � F
σ2

T � f1 � f2 � � τ � � σ2

T
F1 � ω � F2 � ω �

F1 � ω � � F 
 x � t � � � F � ω �

F2 � ω � � F 
 x �� t � � � F �

� ω �
SY � ω � � σ2

T � F � ω � �

2
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Example

x � t � � pT � t � �
�

�
�

1 0 � t � T

0 elsewhere

b ��� 
�� 1 �	� σ2 � 1.

∞

� ∞
x � t � x � t � τ � dt �

T

0
pT � t � τ � dt �

�


� 



�

T� τ 0 � τ � T

T � τ � T � τ � 0

0 elsewhere

pT � t � τ � �

�
�

�

1 0 � t � τ � T

0 elsewhere
�

�
�

�
1 � τ � t � T� τ

0 elsewhere
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RY � τ � �

�
�

�

1
T � T� � τ � � � τ � � T

0 elsewhere

SY � ω � � 1
T � F 
 pT � t � � �

2

F � ω � � F 
 pT � t � � � T

�

sinωT � 2
ωT � 2

�

e

� jωT

�

2

� F � ω � �

2 � T 2 sin2 ωT � 2
� ωT � 2 � 2

SY � ω � � 1
T � F � ω � �

2 � T
sin2 ωT � 2

� ωT � 2 � 2

� T sinc2

SY � f � � T
sin2 π f T

� π f T � 2

� T sinc2 � f T �
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Spectrum for Rectangular Pulses

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frequency

S
pe

ct
ru

m

IV-8



Spectrum for Rectangular Pulses
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Spectrum for Rectangular Pulses
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Definition of Bandwidth for Digital Signals

1. Null-to-Null bandwidth
∆� bandwidth of main lobe of power spectral

density

2. 99% power bandwidth containtment
∆� bandwidth such that 1/2% of

power lies above upper band limit and 1/2% lies below lower band limit

3. x dB bandwidth
∆� bandwidth such that spectrum is xdB below spectrum

at center of band (e.g. 3dB bandwidth)

4. Noise bandwidth
∆� WN � P � S � fc � where P is total power and S � fc � is

value of spectrum at f � fc.
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�

�

S � f �

fc f

(Area under curve = P)

�� WN

5. Gabor bandwidth
∆� σ where σ2 � �

∞� ∞ � f � fc �

2S � f � d f

�

∞� ∞ S � f � d f

6. Absolute bandwidth
∆� WA � min 
 W : S � f � � 0� � f ��� U �
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Rectangular Pulse Example

SY � f � � T
sin2 π f T

� π f T � 2

� T sinc2 � f T �

sinc � π � f� fc � T � 0 at π � f� fc � T � hπ h � � 1

�
� 2

�
� 3

�

� � �

f � fc � n
T �

n � � 1
�
� 2

�

� � �
Null to null bandwidth

∆� width of main lobe of spectral density.

For PSK null to null bandwidth = 2
T

Fractional Power containment Bandwidth
∆� width of frequency band which

leaves 1/2% of singal power above upper band limit and 1/2% of signal power
below band limit

For PSK 99% energy bandwidth = 20 � 56
T

We would like to find modulation schemes which decrease the bandwidth
while retaining acceptable performance
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Modulation 1 2 3 35dB 4 5 3 3dB

BPSK 2.0 20.56 35.12 1.00 ∞ 0.88

QPSK 1.0 10.28 17.56 0.50 ∞ 0.44

MSK 1.5 1.18 3.24 0.62 (0.5) 1
2 0.59

These three modulation schemes all have same error probability.

MSK has minimum possible Gabor bandwidth over all modulation schemes

whose basic pulse is limited to 2T seconds.

All of these have infinite absolute bandwidth.
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Shannon’s theorem revisited

Theorem: (Shannon) For a white Gaussian noise channel there exist signals

with absolute bandwidth W conveying R � 1
T bits of information per second

with arbitrarily small error probability provided

R � 1
T

� W log2 � 1 �

Eb

WT N0

�

where Eb � PT is the energy per data bit and P is the power of the signal

P � lim
T � ∞

1
2T

T

� T
s2 � t � dt

R � W log 1 �

R
W

Eb

N0

�
P

N0 ln2
as W � ∞
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R � W � log 1 �

R
W

Eb

N0

� Eb � N0�
2R

�

W� 1
R � W

� ln2 as
R
W

� 0

Eb � N0 � ln � 2 �� � Eb � N0 � dB � 10log10 � ln � 2 � � � � 1� 6dB
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Up and Down Conversion

In communication systems typically the signal are generated at baseband and
then up converted to the desired carrier frequency. At the receiver this process
is reversed.

�

xc � t � yc � t �

cos � 2π fct �

yc � t � � xc � t � cos � 2π fct �
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Yc � f � � 1
2 � Xc � f� fc � � Xc � f � fc � �

Thus multiplication in the time domain by cos � 2π fct � shifts the spectrum up

and down by fc and reduces each part by 1/2.
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Re � Xc � f � � , ImXc � f �

f
W� W
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Im � Xc � f � �

f

W

� W
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Re � Yc � f � � , Im � Yc � f � �

f
fc� fc
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Im � Yc � f � �

f
fc

fc� W

fc� W

� fc

� fc� W

� fc� W
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Now consider multiplication by� sin � 2π fct � .

�

xs � t � ys � t �

� sin � 2π fct �

ys � t � � � xs � t � sin � 2π fct �

Yc � f � � j
2 � Xc � f� fc �� Xc � f � fc � �

Thus multiplication by� sin � 2π fct � shifts the spectrum up and down also

except that the real part becomes the imaginary part and the imaginary part is

inverted and becomes the real part in addition to a reduction by 1/2.
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Re � Xs � f � �

f
W� W
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Im � Xs � f � �

f
W

� W
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Re � Ys � f � �

f
fc

fc � W

fc � W� fc� fc � W

� fc � W
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Im � Ys � f � �

ffc
fc � Wfc � W� fc

� fc � W� fc � W
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Now consider adding these two functions together.
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�

xc � t � yc � t �

cos � 2π fct �

�

xs � t � ys � t �

� sin � 2π fct �

�

y � t �
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y � t � � yc � t � � ys � t �

� xc � t � cos � 2π fct �� xs � t � sin � 2π fct �

� xe � t � cos � 2π fct � θ � t � �

The signal xe � t � is called the envelope and θ � t � is called the phase.

Y � f � � Yc � f � � Ys � f �

θ � t � � tan
� 1

�

xs � t �

xc � t �
�

xe � t � � � x2
c � t � � x2

s � t � � 1

�

2

y � t � � Re � � xc � t � � jxs � t � � e j2π fct
�
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Re � Y � f � �

f
fcfc � Wfc � W� fc� fc � W� fc � W
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Im � Y � f � �

f
fcfc � W

fc � W

� fc� fc � W

� fc � W
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Signal Decomposition

The signals xc � t � and xs � t � can be recovered from y � t � by mixing down to

baseband and filtering out the double frequency terms. Note that we need the

exact phase of the local oscillators to do this perfectly.
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y � t �

�
�

2cos � 2π fct �

� 2sin � 2π fct �

GLP � f �

GLP � f �

zs � t �

zc � t �
xs � t �

xc � t �
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GLP � f � is an ideal low pass filter with transfer function GLP � f � � 1 � f � � W

and GLP � f � � 0 otherwise.
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GLP � f �

f
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Consider the spectrum of zc � t � . This is given by

Zc � f � � Y � f� fc � � Y � f � fc ��

Similarly the spectrum of zs � t � is

Zs � f � � j � Y � f� fc �� Y � f � fc � ��
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Re � Zc � f � �

f
2 fcW� W� 2 fc
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Im � Zc � f � �

fW

� W
2 fc� 2 fc
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Re � Zs � f � �

f
2 fc

W� W

� 2 fc
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Im � Zs � f � �

f
W

� W
2 fc

� 2 fc
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Example

xc � t � � ac

�

1 cos � 2π f1t � � ac

�

2 sin � 2π f1t � � ac

�

3 cos � 2π f2t �

xs � t � � as

�

1 cos � 2π f1t � � as

�

2 sin � 2π f1t � � as

�

3 sin � 2π f2t �

where

ac

�

1 � 0� 25

�

ac

�

2 � 0� 5

�

ac

�

3 � 1

�

as

�

1 � � 1� 0

�

ac

�

2 � 0� 25

�

ac

�

3 � 1

�

f1 � 1
�

f2 � 2�
The signals are upconverted with a quadrature modulator to produce

� xc � t � cos � 2π fct �� xs � t � sin � 2π fct �

� xe � t � cos � 2π fct � θ � t � �

where fc � 16.
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Figure 28: Example of Up and Down Conversion of Sig-

nals
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Figure 32: Example of Up and Down Conversion of Sig-
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Now consider what happens if there is an imperfect local oscillator
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y � t �

�
�

2cos � 2π fct � φ �

� 2sin � 2π fct � φ �

GLP � f �

GLP � f �

zs � t �

zc � t �
ws � t �

wc � t �
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wc � t � � xc � t � cos � φ � � xs � t � sin � φ �

ws � t � � � xc � t � sin � φ � � xs � t � cos � φ �

wc � t � � jws � t � � � xc � t � � jxs � t � � e

� jφ

Note that this is equivalent to a phase rotation by angle φ.
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We can recover the orignial signal by rotating the signal.

xc � t � � jxs � t � � � wc � t � � jws � t � � e � jφ
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wc � t �

ws � t �

�
�

�
�

�
�

cos � φ �

sin � φ �

cos � φ �

�

xc � t �

xs � t �
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Binary Phase Shift Keying (BPSK)

�

b � t �
� 2Pcos � 2π fct �

Modulator
�

�

s � t �

n � t �
�

�

r � t �

b � t � �

∞

∑
l� � ∞

bl pT � t� lT � �

bl� 
 � 1

�

� 1 ��

pT � t � �
�

�
�

1

�

0 � t � T

0

�

otherwise.

�

�
t

1

pT � t �
T
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s � t � � � 2P
∞

∑
l� � ∞

bl cos � 2π fct � pT � t� lT �

� � 2P b � t � cos � 2π fct � � � 2Pcos � 2π fct � φ � t � �

where φ � t � is the phase waveform. The signal has power P. The energy of the

transmitted bit is E � PT .

The phase of a BPSK signal can take on one of two values as shown below.
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Figure 33: Signals for BPSK Modulation
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Demodulator

�

r � t �

2 � T cos � 2π fct �

�

� LPF

�
� �

X � iT �

t � iT

� 0 dec bi � 1 � � 1

� 0 dec bi � 1 � � 1

The low pass filter (LPF) is a filter “matched” to the baseband signal being

transmitted. For BPSK this is just a rectangular pulse of duration T . The

impulse response is h � t � � pT � t ��

X � t � �

∞

� ∞
2 � T cos � 2π fcτ � h � t� τ � r � τ � dτ

X � iT � �

∞

� ∞
2 � T cos � 2π fcτ � pT � iT� τ � r � τ � dτ
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�
iT

� i � 1 � T
2 � T cos � 2π fcτ �

�

� 2P b � τ � cos � 2π fcτ �

� n � τ � � dτ

�

iT
� i � 1 � T
2 P � T bi � 1 cos � 2π fcτ � cos � 2π fcτ � dτ � ηi

ηi is Gaussian random variable, mean 0 variance N0 � 2. Assuming

2π fcT � 2πn

X � iT � � � PT bi � 1 � ηi � � E bi � 1 � ηi�
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Figure 34: Probability Density of Decision Statistic for Binary
Phase Shift Keying
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Bit Error Probability of BPSK

Pe

�

b � Q
2E
N0

� Q
2Eb

N0

where

Q � x � �

∞

x

1
2π

e

� u2

�

2du

For binary signals this is the smallest bit error probability, i.e. BPSK are

optimal signals and the receiver shown above is optimum (in additive white

Gaussian noise). For binary signals the energy transmitted per information bit

Eb is equal to the energy per signal E. For Pe
�

b � 10 � 5 we need a bit-energy,

Eb to noise density N0 ratio of Eb � N0 � 9� 6dB. Note: Q � x � is a decreasing

function which is 1/2 at x � 0. There are efficient algorithms (based on Taylor

series expansions) to calculate Q � x � . Since Q � x � � e �

� x2

�

2

� � 2 the error
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probability can be upper bounded by

Pe

�

b �

1
2

e �

� Eb �

N0 �

which decreases exponentially with signal-to-noise ratio.
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Figure 35: Error Probability of BPSK.
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Bandwidth of BPSK

The power spectral density is a measure of the distribution of power with
respect to frequency. The power spectral density for BPSK has the form

S � f � � PT
2 �

sinc2

� � f� fc � T � � sinc2

� � f � fc � T � �

where

sinc � x � � sin � πx �

πx

�

Notice that ∞
� ∞

S � f � d f � P�
The power spectrum has zeros or nulls at f� fc � i � T except for i � 0; that is
there is a null at f� fc � � 1 � T called the first null; a null at f� fc � � 2 � T

called the second null; etc. The bandwidth between the first nulls is called the
null-to-null bandwidth. For BPSK the null-to-null bandwidth is 2 � T . Notice
that the spectrum falls off as � f� fc � 2 as f moves away from fc. (The
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spectrum of MSK falls off as the fourth power, versus the second power for

BPSK).

It is possible to reduce the bandwidth of a BPSK signal by filtering. If the

filtering is done properly the (absolute) bandwidth of the signal can be

reduced to 1 � T without causing any intersymbol interference; that is all the

power is concentrated in the frequency range� 1 � � 2T � � � f� fc � � 1 � � 2T � .
The drawbacks are that the signal loses its constant envelope property (useful

for nonlinear amplifiers) and the sensitivity to timing errors is greatly

increased. The timing sensitivity problem can be greatly alleviated by filtering

to a slightly larger bandwidth� � 1 � α � � � 2T � � � f� fc � � � 1 � α � � � 2T � .
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Figure 36: Spectrum of BPSK
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Figure 38: Spectrum of BPSK
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Example

Given:

� Noise power spectral density of N0 � 2 � � 150 dBm/Hz =10 � 18 Watts/Hz.

� Pr � 3 � 10 � 10 Watts

� Desired Pe � 10 � 7.

Find: The data rate that can be used and the bandwidth that is needed.

Solution: Need Q � 2Eb � N0 � � 10 � 7 or Eb � N0 � 11� 3dB or Eb � N0 � 13� 52.

But Eb � N0 � PrT � N0 � 13� 52. Thus the data bit must be at least

T � 9� 0 � 10 � 8 seconds long, i.e. the data rate 1 � T must be less than 11

Mbits/second. Clearly we also need a (null-to-null) bandwidth of 22 MHz.
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An alternative view of BPSK is that of two antipodal signals; that is

s0 � t � � � Eψ � t � �

0 � t � T

and

s1 � t � � � � Eψ � t � �

0 � t � T

where ψ � t � � 2 � T cos � 2π fct � �

0 � t � T is a unit energy waveform. The

above describes the signals transmitted only during the interval � 0 �

T � .

Obviously this is repeated for other intervals. The receiver correlates with

ψ � t � over the interval � 0 �

T � and compares with a threshold (usually 0) to make

a decision. The correlation receiver is shown below.

�

r � t �

�

�

ψ � t �

�

T
0 �

� γ dec s0

� γ dec s1
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This is called the “Correlation Receiver.” Note that synchronization to the

symbol timing and oscillator phase are required.
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Spectrum for Passband Pulses

Now Let Z � t � � Y � t � cos � ωct � θ � with θ uniform on [0,2π] and independent
of Y � t � . Then

RZ � τ � � 1
2

RY � τ � cosωcτ

SZ � ω � � 1
4 � SY � ω� ωc � � SY � ω � ωc � �

If Z � t � � Y1 � t � cos � ωct � θ1 � � Y2 � t � cos � ωct � θ2 � with Y1 � t � and Y2 � t �

independent then

RZ � τ � � 1
2 � RY1 � τ � � RY2 � τ � � cosωcτ

Application: for PSK x � t � � ApT � t � . The spectrum is

SZ � f � � A2T
4 �

sinc2 � f� fc � T � sinc2 � f � fc � T �
�
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