
Lecture 7

Goals:

� Signals as Vectors, Noise as Vectors

� Optimum Detection in AWGN

VII-1

Decomposition of Signal and Noise

Given a set of signals s0 � t �� � � �� sM � 1 � t � there exists a set of orthonormal

signals φ0 � t �� φ1 � t � � � � �� φN � 1 � t � with N � M such that

si � t ���

N � 1

∑
m	 0

si 
 mφm � t �

For any complete orthonormal set of signals φ0 � t �� φ1 � t �� � � � we can represent a

noise process as random variables and deterministic orthonormal functions

n � t � �

∞

∑
m	 0

nmφm � t �
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Signal

si

Serial

to

Parallel

si 
 0

si 
 1

si 
 N � 1

φ0 � t �
�

φ1 � t �
�

φN � 1 � t �
�

�

si � t �
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Decomposition of Signal and Noise

Consider a communication system that transmits one of M signals.

s0 � t �� � � �� sM � 1 � t � in additive white Gaussian noise. s Then given si � t � was

transmitted the received signal is

r � t � � si � t � � n � t �

�

∞

∑
m	 0

� si 
 m � nm � φm � t �

Define rm� si 
 m � nm. Then

r � t � �

∞

∑
m	 0

rmφm � t �
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We can determine the (random) variable rm by

rm� �
r � t � φ

�

m � t � dt
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Decomposition of Noise
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Example

s0 � t � � ApT � t �

s1 � t � � � ApT � t �

Let φl � t ��� �

1
T exp � j2πl f0t � pT � t � where f0� 1 � T . Then

s0 � t � � � Eφ0 � t �

s1 � t � � � � Eφ0 � t �

n � t � �

∞

∑
m	 0

nmφm � t �

r � t � �

∞

∑
m	 0

rmφm � t �
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rm �

�

r � t � φ

�

m � t � dt

�

� � si � t � � n � t � � φ

�

m � t � dt

� si 
 m � nm

Note that we can recover completely r � t � if we know the coefficients
rm� m� 0� 1� � � � . So the optimal decision based on observing r0� r1� � � � is also
the optimal decision based on observing r � t � . Given signal si � t � is transmitted
we can determine the probability density of rm as follows. First, rm is
Gaussian since it is the result of integrating Gaussian noise. Second the mean
of rm is si 
 m and the variance is N0 � 2. So the probability density of rm

conditioned on signal i transmitted (event Hi) is

pi � rm � � frm � Hi � rm �

� 1
� 2π 	 N0 � 2

exp � � � rm � si 
 m � 2

2 � N0 � 2 �
�
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Next note that rm is independent of rm for m �� n. Thus

fr0 
 r1 
� � � 
 rk � Hi � x0� x1� x2� � � �� xk � �

k

∏
m	 0

frm � Hi � xm �

�

k

∏
m	 0

pi � xm �
VII-9

M-ary Detection Problem

Consider the problem of deciding which of M hypothesis is true based on

observing a random variable (vector) r. The performance criteria we consider

is the average error probability. That is the probability of deciding anything

except hypothesis Hj when hypothesis Hj is true.

The underlying model is that there is a conditional probability density (mass)

function of the observation r given each hypothesis Hj. There are disjoint

decision regions R0� R1� � � �� RM � 1. When r � Rm the receiver decides Hm.

E � Pe ��

M � 1

∑
i	 0

Pe 
 iπi �

M � 1

∑
i	 0

P � don’t decide Hi � Hi � πi

�

M � 1

∑
i	 0

P � r �

M � 1

�

l	 0 
 l �	 i

Rl � Hi � πi
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�

M � 1

∑
i	 0 �

∑
l �	 i

P � decide Hl � Hi true �
	

πi

�

M � 1

∑
i	 0

� 1 � P � decide Hi � Hi true � � πi

�

M � 1

∑
i	 0

πi �

M � 1

∑
i	 0 � Ri

pi � r � πidr

� 1 �

M � 1

∑
i	 0 � Ri

pi � r � πidr �

The decision rule that minimizes average probability of error assigns r to Ri if

pi � r � πi� max
0 
 j 
 M � 1

p j � r � π j. Let p � r � be an arbitrary density function that is

nonzero everywhere pi � r � is nonzero then an equivalent decision rule is to

assign r to Ri if
pi � r �

p � r �

πi� max
0 
 j 
 M � 1

p j � r �

p � r �

π j �
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Thus for M hypotheses the decision rule that minimizes average error

probability is to choose i so that pi � r � πi� p j � r � π j� � j �� i. Let

Λi 
 j�

pi � r �

p j � r �

where i� 0� 1� � � �� M � 1, j� 0� 1� � � �� M � 1. Then the optimal decision rule

is:

Choose i if Λi 
 j�

π j

πi
for all j �� i �

We will usually assume πi� 1
M � i. (If not we should do source encoding to

reduce the entropy (rate)). For this case the optimal decision rule is

Choose i if Λi 
 j� 1 � j �� i �
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Decision Regions
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Example 1: Additive White Gaussian Noise

Consider three signals in additive white Gaussian noise. For additive white

Gaussian noise K � s� t ���

N0
2 δ � t � s � . Let � ϕi � t � � ∞

i	 0 be any complete

orthonormal set on � 0� T � . Consider the case of 3 signals. Find the decision

rule to minimize average error probability. First expand the noise using

orthonormal set of functions and random variables.

n � t � �

∞

∑
i	 0

niϕi � t �

where E � ni �� 0 and Var � ni �� N0 � 2 and � ni � ∞
i	 0 is an independent identically

distributed (i.i.d.) sequence of random variables with Gaussian density

functions.

Let

s0 � t � � ϕ0 � t � � 2ϕ1 � t �
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s1 � t � � 2ϕ0 � t � � ϕ1 � t �

s2 � t � � ϕ0 � t � � 2ϕ1 � t �

Note that the energy of each of the three signals is the same, i.e.

�

T
0 s2

i � t � dt� � � si � � 2� 5. Then we have a three hypothesis testing problem.

H0 : r � t � � s0 � t � � n � t ���

∞

∑
i	 0

� s0 
 i � ni � ϕi � t �

H1 : r � t � � s1 � t � � n � t ���

∞

∑
i	 0

� s1 
 i � ni � ϕi � t �

H2 : r � t � � s2 � t � � n � t ���

∞

∑
i	 0

� s2 
 i � ni � ϕi � t �

The decision rule to minimize the average error probability is given as follows

Decide Hi if πi pi � r � � max
j

π j p j � r �

First let us consider the first L � 1 variables and normalize each side by the
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density function for the noise alone. The noise density function for L � 1

variables is

p� L � � r � �

�

1

	 2πN0 � 2 �

N

exp � � 1

2 N0
2

L

∑
m	 0

r2
m �

The the optimal decision rule is equivalent to

Decide Hi if πi
pi � r �

p � r �
� max

j
π j

p j � r �

p � r �
�

As usual assume πi� 1 � M. Then

p� L �

0 � r �

p� L � � r �
� �

1

� 2πN0 � 2 �

L

exp � � 1
2

N0
2

� ∑i	 0 
 1 � ri � s0 
 i �

2 � ∑L
i	 2 r2

i � �

�

1

� 2πN0 � 2 �

L

exp � � 1
2

N0
2

∑1
i	 0 r2

i � ∑L
i	 2 �

� exp � � 1
N0

� ∑
i	 0 
 1

� ri � s0 
 i �

2 � r2
i � �
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� exp � �

1
N0

� 2r1 � 4r2 � 5 � � �

Now since the above doesn’t depend on L we can let L � ∞ and the result is

the same, i.e.

p0 � r �

p � r �

∆� lim
L � ∞

p� L �

0 � r �

p� L � � r �
� exp � �

1
N0

� 2r0 � 4r1 � 5 � � �

Similarly
p1 � r �

p � r �
� exp � �

1
N0

� 4r0 � 2r1 � 5 � �

p2 � r �

p � r �
� exp � �

1
N0

� 2r0 � 4r1 � 5 � � �
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s0 � t �

s1 � t �

s2 � t �

φ1 � t �

φ2 � t �
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Decision Regions
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Likelihood Ratio for Real Signals in AWGN

Assume two signals in Gaussian noise.

H0 : r � t � � s0 � t � � n � t �

H1 : r � t � � s1 � t � � n � t �

Goal: Find decision rule to minimize the average error probability.

Let n � t � autocorrelation function R � � s� t ���

N0
2 δ � t � s � We assume that n � t � is a

zero mean white Gaussian noise random process.
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Karhunen-Loeve Expansion

By Karhunen-Loeve expansion

n � t � �

∞

∑
m	 0

nmϕi � t �

where ni are Gaussian random variables with mean 0 variance N0
2 and

E � nmnk �� 0� m �� k. Thus nm and nk are independent. Since

� ϕm � t � ;m� 0� 1� � � � � is a complete orthonormal set and we assume s j � t � has

finite energy we have

s j � t � �

∞

∑
m	 0

s j 
 mϕm � t ���
N � 1

∑
m	 0

s j 
 mϕm � t � �

This last equality is because we only need a finite (N � M) orthonormal

waveforms to represent a set of M signals. Equivalently s j 
 i� 0 for i � N.
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Thus

Hj : r � t � �

∞

∑
m	 0

� s j 
 m � nm � ϕm � t �

rm� s j 
 m � nm� m� 0� 1� 2� � � �

Define

Λ j 
 i � L �

∆� p j � r0� r1� � � �� rL �

pi � r0� r1� � � �� rL �
�

Λ j 
 i � r � t � �

∆� lim
L � ∞

Λ j 
 i � L �

where rm is Gaussian with mean s j 
 m variance N0 � 2.

p j � rm � � 1

� N0π
exp

�
� 1

N0

� rm � s j 
 m �

2

�

p j � r � �

L

∏
m	 0

p j � rm � �

L

∏
m	 0

� 	 N0π �
� 1 exp

�
� 1

N0

L

∑
m	 0

� rm � s j 
 m �

2

�
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Λ j 
 l � L ���

pL
j � r �

pL
l � r �

�

L

∏
m	 0

� 	 N0π �
� 1

L

∏
m	 0

� 	 N0π �
� 1

exp

�
� 1

N0

L

∑
m	 0

� rm � s j 
 m �

2

�

exp

�
� 1

N0

L

∑
m	 0

� rm � sl 
 m �

2

�

� exp

�
� 1

N0

L

∑
m	 0

� r2
m

� 2rms j 
 m � s2
j 
 m � r2

m � 2rmsl 
 m � s2
l 
 m �

�

� exp

�
� 1

N0

L

∑
m	 0

� s2
j 
 m � s2

l 
 m � 2ri � sl 
 m � s j 
 m � �
�

�

If we take the limit as L � ∞ we get

Λ j 
 l � r � t � � � exp

�
� 1

N0

� E0 � E1 � 2 � r� sl � s j � �
�

�

Λ j 
 l � r � t � ��� exp

�
� 1

N0

� � s j� s j � � � sl� sl � � 2 � r� sl � � 2 � r� s j � �
�

�

VII-23

or equivalently

Λ j 
 l � r � t � � � exp

�
� 1

N0

� � � s j � � 2 � � � sl � � 2 � 2 � r� sl � s j � �
�

� exp

�
� 1

N0

� � � r � s j � � 2 � � � r � sl � � 2 �
�

The optimum decision rule for additive white Gaussian noise is then to choose

i if

� si � r �

2� min
0 
 j 
 M � 1 � s j � r �

2 �
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Demodulator

r � t �
φ0 � t �

�

φ1 � t �
�

φN � 1 � t �
�

� r � t � φ0 � t � dt

� r � t � φ1 � t � dt

� r � t � φN � 1 � t � dt

r0

r1

rN � 1

Find si with

smallest

� � r � si � � 2
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Example: M equal energy signals

Now consider the optimum receiver for M-ary equally likely signals and the
associated error probability. Assume the M signals are equienergy signals and
equiprobable. The decision rule derived previously for AWGN in this case
simplifies to

Decide Hi if � � si � r � � 2� min
0 
 j 
 M � 1 � � s j � r � � 2 �

Now since the M signals are equienergy we can write this as

� � s j � r � � 2� � � s j � � 2 � 2 � s j� r � � � � r � � 2 �

The first term above is constant for each j as is the last term. Thus finding the
minimum is equivalent to finding the maximum of

� s j� r � �

Thus the receiver should compute the inner product between the M different
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signals and find the largest such correlation. If the signals are all of duration

T , i.e. zero outside the interval � 0� T � then this is also equivalent to filtering the

received signal with a filter with impulse response s j � T � t � , sampling the

output of the filter at time T and choosing the largest.
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Demodulator (Equal Energy Case)

r � t �

s0 � t �
�

s1 � t �
�

sM � 1 � t �
�

� r � t � s0 � t � dt

� r � t � s1 � t � dt

� r � t � sN � 1 � t � dt

� r� s0 �

� r� s1 �

� r� sM � 1 �

Find si with

largest

� r� si �
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Notes about Optimum Receiver in AWGN

� Consider the case of equally likely signals (π0� � � �� πM � 1� 1 � M).

� The optimum receiver first maps the received signal into a N dimensional

vector. (r � t � � r).

� The decision region is determined by the perpendicular bisectors of the

signal points.

� Then the receiver finds which signal is closest (in Euclidean distance) to

the received vector. (Find i for which r � Ri ).
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Example
s0 � t �

tT � 3 2T � 3 T

s2 � t �

tT � 3 2T � 3 T

s1 � t �

tT � 3 2T � 3 T

s3 � t �

tT � 3 2T � 3 T
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Orthonormal Basis Functions
φ0 � t �

tT � 3 T

φ1 � t �

tT � 3 2T � 3 T

φ2 � t �

t2T � 3 T
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Signal Vectors

s0 � � � 1� � 1� � 1 �

s1 � � � 1� � 1� � 1 �

s2 � � � 1� � 1� � 1 �

s3 � � � 1� � 1� � 1 �
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Optimum Receiver 1

r � t �
φ0 � t �

�
φ1 � t �

�

φ2 � t �
�

� r � t � φ0 � t � dt

� r � t � φ1 � t � dt

� r � t � φ2 � t � dt

r0

r1

r2

Find si with

smallest

� � r � si � � 2
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Optimum Receiver 2

r � t �

s0 � t �
�

s1 � t �
�

s2 � t �
�

s3 � t �
�

� r � t � s0 � t � dt

� r � t � s1 � t � dt

� r � t � s2 � t � dt

� r � t � s3 � t � dt

� r� s0 �

� r� s1 �

� r� s2 �

� r� s3 �

Find si with

largest

� r� si �
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Optimum Receiver 3

r � t � h � t � � pT � t �

t� T� 2T� 3T

Y � t �

Find si with

largest

� r� si �

r0� Y � T � �

�

r � t � φ0 � t � dt�

�

T

0
r � t � dt

r1� Y � 2T � �

�

r � t � φ1 � t � dt�

�

2T

T
r � t � dt

r2� Y � 3T � �

�

r � t � φ2 � t � dt�

�

3T

2T
r � t � dt
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Simplified Calculation

� r� s0 � � � r0 � r1 � r2

� r� s1 � � � r0 � r1 � r2

� r� s2 � � � r0 � r1 � r2

� r� s3 � � � r0 � r1 � r2

First calculated x0� x1� x2� x3 as follows

x0 � � r0

x1 � � r0

x2 � r1 � r2

x3 � r1 � r2
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Then

� r� s0 � � x0 � x2

� r� s1 � � x1 � x3

� r� s2 � � x0 � x2
� r� s3 � � x1 � x3

Thus the calculation requires only 6 additions/subtractions.
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