
Lecture 9

Goals

� Be able to determine bandwidth efficiency and energy efficiency of

orthogonal signals.

� Be able to demodulate orthogonal signals without phase reference.

� Be able to synthesize different types of orthogonal signals.

IX-1



Orthogonal Signals

A set of signals � φi � t � : 0 � t � T � 0 � i � M � 1 � are said to be orthogonal

(over the interval � 0 � T � ) if

T

0
φi � t � φ j � t � dt	 0 � i 
	 j �

In most cases the signals will have the same energy and it is convenient to

normalize the signals to unit energy. A set of signals

� φi � t � : 0 � t � T � 1 � i � M � are said to be orthonormal (over the interval

� 0 � T � ) if

T

0
φi � t � φ j � t � dt	

�



�

0 � i 
	 j

1 � i	 j �
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The set of orthogonal signals can be described by

s0 � t � 	 � Eφ0 � t �

s1 � t � 	 � Eφ1 � t �

s2 � t � 	 � Eφ2 � t �

sM� 1 � t � 	 � EφM� 1 � t �

Below we describe a number of different orthonormal signal sets. The signal

sets will all be described at some intermediate frequency f0 but are typically

modulated up to the carrier frequency fc.
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General Modulator

�

b0 � t �

�

b1 � t �

�

b2 � t �

�

bk� 1 � t �

Select

one of

M	 2k

unit energy

signals

�

u � t �

�

� 2E cos � 2π � fc � f0 � t �

�

s � t �
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bi � t � 	

∞

∑
l� � ∞

bl pT � t � lT � � i	 1 � 2 � � � � � k

u � t � 	

∞

∑
l� � ∞

φil � t � lT �

where for � l � 1 � T � t � T

il	

������

 �����

�

1 � b1 � t �	 b2 � t �	 � � �	 bk� 1 � t �	 bk � t �	 � 1

2 � b1 � t �	 b2 � t �	 � � �	 bk� 1 � t �	 � 1 � bk � t �	 � 1

M � b1 � t �	 b2 � t �	 � � �	 bk� 1 � t �	 bk � t �	 � 1
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General Coherent Demodulator

r � t �
�

�

� 2cos � 2π � fc� f0 � t �

�
�

� φ0 � T � t �

φ1 � T � t �

φM� 1 � T � t �

�� �

X2 � lT �

t� lT

�� �

X1 � lT �

t� lT

�� �

XM � lT �

t� lT

Choose

Largest

�
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φm � T � t � is the impulse response of the m-th matched filter. The output of

these filters (assuming that the il-th orthogonal signal is transmitted is) given

by

Xm � lT �	

�



�
ηm � m 
	 il

� E � ηm � m	 il

where � ηm � m	 0 � 1 � 2 � � � � � M � 1 � is a sequence of independent, identically

distributed Gaussian random variables with mean zero and variance N0 �

2.

IX-7



Error Probability

To determine the probability of error we need to determine the probability that
the filter output corresponding to the signal present is smaller than one of the
other filter outputs.

Pe

�

0 	 P � X0 � max � X1 � � � � � XM� 1 � �

s0trans �

Pe

�

0 	 1 � P � X1 � X0 � X2 � X0 � X3 � X0 � � � � � XM� 1 � X0 �

s0trans �

	 1 � P � η1 � � E � η0 � η2 � � E � η0 � � � � ηM� 1 � � E � η0 �

	 1 �

∞

� ∞
ΦM� 1

� � E � x � fη0 � x � du

	 1 �

∞

� ∞
ΦM� 1

� � E � x �

1
� πN0

exp � � x2

N0

� dx

	 M � 1

� 2π

∞

� ∞
Φ � u � 2E

N0

� ΦM� 2

� u � e
� u2

�

2du

where Φ � u � is the distribution function of a zero mean, variance 1, Gaussian
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random variable given by

Φ � u � 	

1
2π

u

� ∞
e

� x2

�

2dx �

The last step in the derivation is obtained by using the integration by parts
formula. The symbol error probability can be upper bounded as

Pe

�

s �
����


 ���
�

1 � E
N0 � lnM

exp �
�

E
N0

� � lnM

�

2

� lnM � E
N0 � 4lnM

exp � � �

E
2N0

� lnM � � � E
N0 � 4lnM �

Normally a communication engineer is more concerned with the energy
transmitted per bit rather than the energy transmitted per signal, E. If we let
Eb be the energy transmitted per bit then these are related as follows

Eb	 E
log2 M

�

Thus the bound on the symbol error probability can be expressed in terms of
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the energy transmitted per bit as

Pe

�

s �
�����


 ����
�

1 �

Eb
N0 � ln2

exp2

� log2 M
�

Eb
N0

� � ln2

�

2

� ln2 �

Eb
N0 � 4ln2

exp2 �
� log2 M

�

Eb
2N0

� ln2

� � �

Eb
N0 � 4ln2

where exp2 � x � denotes 2x. Note that as M � ∞, Pe � 0 if Eb
N0

� ln2 =

-1.59dB.
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So far we have examined the symbol error probability for orthogonal signals.

Usually the number of such signals is a power of 2, e.g. 4, 8, 16, 32, .... If so

then each transmission of a signal is carrying k	 log2 M bits of information.

In this case a communication engineer is usually interested in the bit error

probability as opposed to the symbol error probability. Assume signal 0 is

transmitted corresponding to the data bits being (000...00). If an error occurs

and the demodulator chooses one of the incorrect signals than each of the

incorrect signals has the same probability. Thus the signal corresponding to

data bits being (000...01) has the same probability as an error to a signal

corresponding to data bits (111...11). If signal 0 is transmitted then there will

be M/2 other signals that will cause a bit error in any particular bit. Thus

Pe

�

b	 M
2 � M � 1 �

Pe

�

s	

2k� 1

2k � 1
Pe

�

s �
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Figure 44: Symbol Error Probability for Coherent Demodulation
of Orthogonal Signals IX-12
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Figure 45: Bit Error Probability for Coherent Demodulation of
Orthogonal Signals IX-13



Orthogonal Signal Sets

Below we define several different orthogonal signal sets. We will define the

bandwidth of a signal set as the minimum difference in carrier frequencies

between two such signal sets so that any signal from one set is orthogonal to

any signal from the other set.
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A. Time-orthogonal

φi � t � 	

�



�

2M
T sin � 2π f0t � � iT

M � t � � i � 1 � T

�

M

0 � elsewhere

i 	 0 � 1 � � � � � M � f0	 n
M
2T

W 	 �
� n � 1 � M

2T
� nM

2T �

	 M
2T
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B. Time-orthogonal quadrature-phase

φ2i � t � 	

�



�

2M
T sin � 2π f0t � � 2iT

M � t � 2 � i � 1 � T

�

M

0 � elsewhere

φ2i � 1 � t � 	

�



�
2M
T cos � 2π f0t � � 2iT

M � t � 2 � i � 1 �

T
M

0 elsewhere

i 	 0 � 1 � � � � �

M
2

� 1 � M even � f0	 n
M
2T

W 	 �
� n � 1 � M

2T
� nM

2T �

	 M
2T
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C. Frequency-orthogonal

φi � t � 	 2E
T

sin � 2π � f0 �

i
2T

t � � � 0 � t � T

i 	 0 � 1 � � � � � M � 1 � f0	 nM
2T

�

W 	 �
� n � 1 � M

2T

� nM
2T �

	 M
2T
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D. Frequency-orthogonal quadrature-phase

φ2i � t � 	 2E
T

sin � 2π � f0 �

i
T � � t � 0 � t � T

φ2i � 1 � t � 	 2E
T

cos � 2π � f0 �

i
T � t � � 0 � t � T

f0	 nM
2T

�

W 	 �
� n � 1 � M

2T
� nM

2T �

	 M
2T
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E. Hadamard-Walsh Construction

The last construction of orthogonal signals is done via the Hadamard Matrix.

The Hadamard matrix is an N by N matrix with components either +1 or -1

such that every pair of distinct rows are orthogonal. We show how to construct

a Hadamard when the number of signals is a power of 2 (which is often the

case).

Begin with a two by two matrix

H2	 �
�

� 1 � 1
� 1 � 1

�
�

�
Then use the recursion

H2l	 �
�

� H2 � l� 1 � � H2 � l� 1 �

� H2 � l� 1 �

� H2 � l� 1 �

�
�

�
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Now it is easy to check that distinct rows in these matrices are orthogonal. The

i-th modulated signal is then obtained by using a single (arbitrary) waveform

N times in nonoverlapping time intervals and multiplying by the j � th

repetition of the waveform by the jth component of the i-th row of the matrix.

Example (M	 4):

H4 	 �
�

H2 H2

H2 � H2

�
�

	

�
�

�
�

�
�

�

� 1 � 1 � 1 � 1

� 1 � 1 � 1 � 1

� 1 � 1 � 1 � 1

� 1 � 1 � 1 � 1

�
�

�
�

�
�

�

�
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Example (M	 8):

H8 	 �
�

H4 H4

H4 � H4

�
�

	

�
�

�
�

�
�

�

H2 H2 H2 H2

H2 � H2 H2 � H2

H2 H2 � H2 � H2

H2 � H2 � H2 H2

�
�

�
�

�
�

�

IX-21



	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� 1 � 1 � 1 � 1 � 1 � 1 � 1 � 1

� 1 � 1 � 1 � 1 � 1 � 1 � 1 � 1

� 1 � 1 � 1 � 1 � 1 � 1 � 1 � 1
� 1 � 1 � 1 � 1 � 1 � 1 � 1 � 1

� 1 � 1 � 1 � 1 � 1 � 1 � 1 � 1

� 1 � 1 � 1 � 1 � 1 � 1 � 1 � 1

� 1 � 1 � 1 � 1 � 1 � 1 � 1 � 1

� 1 � 1 � 1 � 1 � 1 � 1 � 1 � 1

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

�
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�
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Figure 46: Hadamard-Walsh Orthogonal Signals
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Processing of of Hadamard Generated Orthogonal Signals

W0 	 � X0 � X1 � X2 � X3 � X4 � X5 � X6 � X7 �

W1 	 � X0 � X1 � X2 � X3 � X4 � X5 � X6 � X7 �

W2 	 � X0 � X1 � X2 � X3 � X4 � X5 � X6 � X7 �

W3 	 � X0 � X1 � X2 � X3 � X4 � X5 � X6 � X7 �

W4 	 � X0 � X1 � X2 � X3 � X4 � X5 � X6 � X7 �

W5 	 � X0 � X1 � X2 � X3 � X4 � X5 � X6 � X7 �

W6 	 � X0 � X1 � X2 � X3 � X4 � X5 � X6 � X7 �

W7 	 � X0 � X1 � X2 � X3 � X4 � X5 � X6 � X7 �
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Figure 47: Fast Processing for Hadamard Signals
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Bandwidth of Orthogonal Signals

If we define bandwidth of M signals as minimum frequency separation

between two such signal sets such that any signal from one signal set is

orthogonal to every signal from a frequency adjacent signal set then for all of

these examples of M signals the bandwidth is

W	 M
2T

� M	 2WT !

Thus there are 2WT orthogonal signals in bandwidth W and time duration T .
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Capacity

R

�

W

E
b

�N
0

(d
B

)
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