
Controller Area Network (CAN)

EECS 461, Fall 2008∗

J. A. Cook
J. S. Freudenberg

1 Introduction

Up until now, we’ve considered our embedded control system to be self-contained: an algorithm implemented
in software resident on a single microprocessor, communicating with its environment through sensors and
actuators via peripheral devices such as an analog-to-digital converter. In fact, many embedded systems are
distributed, consisting of multiple microprocessors communicating over one or more networks to accomplish
shared tasks. For example, a modern automobile may have seventy or more microprocessors communicat-
ing over several networks to manage entertainment and navigation functions, central locking mechanisms,
lighting and other vehicle systems. Safety systems such as air bags employ dedicated high speed network
communication, as does powertrain control for communication between, for example, the engine and trans-
mission controllers. Figure 1 illustrates some of the networks connecting automotive embedded systems
[1, 2]. Although we will consider only wired networks, “wireless” is clearly a crucial technology for every-
thing from assisted living to national defense [4], and wireless networking is a growing area of importance
to the twenty-first century automobile. Applications include toll collection, fleet vehicle management, stolen
vehicle tracking, automatic collision notification and remote diagnostics. One may expect that the confluence
of in-vehicle and external communication technologies will lead to new information, entertainment and safety
services such as the in-vehicle display of roadway emergency warnings or even active mitigation of collisions
at intersections and vehicle-to-vehicle cooperation for improvement of safety and traffic flow [3].

1.1 Open System Interconnection (OSI)

It should be obvious that if two or more microprocessors are to communicate, a standard protocol must
exist defining how data are to be transmitted among cooperating devices. The most common protocol is
TCP/IP (Transmission Control Protocol/Internet Protocol), which is used to connect hosts on the Internet.
Pre-dating TCP/IP was the Open Systems Interconnection (OSI) protocol initiated in 1982 by the Inter-
national Organization for Standardization (ISO 7498-1:1994(E)). The OSI protocol is sometimes referred to
as the “7-layer” model because it consists of seven independent elements that describe the requirements for
communication at different levels of abstraction. The seven layers are:

Application Layer: The application layer specifies how application programs access the network. Exam-
ples include email, file transfer, remote terminal access and web browsers.

Presentation Layer: The presentation layer defines things like data compression and encryption.

Session Layer: The session layer establishes, manages and terminates the connections between cooperating
applications.

Transport Layer: The transport layer provides transfer of data between users and addresses issues of error
control and security.

∗Revised October 13, 2008.

1



Lock

Seat

Seat

Lock

Mirror

Lights

Lights

Speaker

Speaker

Lights

Trunk

Lights

Window

Window

Window

Window

Lock

Mirror

Lock

Climate
Control

Central Body

Module

Strg Column

Ignition

Occupant

Safety

Gateway

Engine

Transmission

Active

Suspension

Diagnostics

Gateway

Instrument Cluster
P/T - Body Gateway

Speaker

Speaker

Radio

Trip

Nav

Low Speed CAN

High Speed CAN

MOST

Figure 1: Typical Automotive Networks

Network Layer: The network layer performs network routing functions.

Data Link Layer: The data link layer provides synchronization and error control.

Physical Layer: The physical layer defines the physical specifications for devices on the network, including
connectors, cables and electrical specifications like voltage levels.

The most commonly used network for control in automotive and manufacturing applications is the Controller
Area Network, or CAN. The CAN protocol specifies rules for implementing the physical and data link layers
of the OSI model in silicon to effect serial transfer of information between two or more devices.

1.2 Controller Area Network (CAN)

The Controller Area Network was developed by Robert Bosch GmbH for automotive applications in the early
1980s and publicly released in 1986. The Bosch CAN specification became an ISO standard (ISO 11898) in
1993 (CAN 2.0A), and extended in 1995 to permit longer device identifiers (CAN 2.0B) [5]. Typically, CAN
interconnects a network of modules (or nodes) using two wire, twisted pair cable. Many companies implement
CAN devices. In the Freescale MPC 5xx series of processors, the CAN device is called the TouCAN module;
in the MPC 55xx series it’s called FlexCAN. CAN is a serial, multimaster, multicast protocol, which means
that when the bus is free, any node can send a message (multimaster), and all nodes may receive and act on
the message (multicast). The node that initiates the message is called the transmitter; any node not sending
a message is called a receiver. Messages are assigned static priorities, and a transmitting node will remain
a transmitter until the bus becomes idle or until it is superseded by a node with a higher priority message
through a process called arbitration. A CAN message may contain up to 8 bytes of data. A message identifier
describes the data content and is used by receiving nodes to determine the destination on the network. Bit
rates up to 1 Mbit/s are possible in short networks (≤ 40 m). Longer network distances reduce the available
bit rate (125 kbit/s at 500 m, for example). “High speed” CAN is considered to be 500 kbit/s.

1.2.1 CAN Fundamentals

The details of CAN are specified in [6]. In the following paragraphs, we will provide a brief description of
how data are transmitted over CAN, how CAN messages are structured, and how transmission errors are

2



handled. There are four types of CAN messages, or “frames:” Data Frame, Remote Frame, Error Frame and
Overload Frame. The data frame is the standard CAN message, broadcasting data from the transmitter to
the other nodes on the bus. A remote frame is broadcast by a transmitter to request data from a specific
node. An error frame may be transmitted by any node that detects a bus error. Overload frames are used to
introduce additional delay between data or remote frames. CAN 2.0A and 2.0B data frames are illustrated
in Figure 2 and in Tables 1 and 2. The difference between a CAN 2.0A and a CAN 2.0B message is that
CAN 2.0B supports both 11 bit (standard) and 29 bit (extended) identifiers. Standard and extended frames
may exist on the same bus, and even have numerically equivalent identifiers. In this case, the standard frame
will have the higher priority.

Bus Idle

Arbitration

Field

11 Bit Identifier

SOF

SOF

Bus Idle

RTR

RTR
RTR

r0IDE

CRC Delimiter

ACK Delimiter

ACK Slot

Arbitration

Field

Control

Field

DLC
r1,r0

r1,r0

7 Bit EOF

3 Bit INT

ACK

Data 0-8 Bytes

Bus Idle

11 Bit Identifier

DLC
Data 

15 Bit CRC

CAN 2.0A Message Frame

CAN 2.0B Message Frame (Standard Format)

SOF

SRR

IDE

Arbitration Field

Bus Idle

11 Bit Identifier

DLC

Data 

CAN 2.0B Message Frame (Extended Format)

18 Bit Extension

Figure 2: CAN Message Formats

Table 1: CAN 2.0A Message Frame
Field Length (bits) Description
Start of Frame (SOF) 1 Must be dominant
Identifier 11 Unique identifier indicates priority
Remote Transmission Request (RTR) 1 Dominant in data frames; recessive in remote frames
Reserved 2 Must be dominant
Data Length Code (DLC) 4 Number of data bytes (0–8)
Data Field 0–8 bytes Length determined by DLC field
Cyclic Redundancy Check (CRC) 15
CRC Delimiter 1 Must be recessive
Acknowledge (ACK) 1 Transmitter sends recessive; receiver asserts dominant
ACK Delimiter 1 Must be recessive
End of Frame (EOF) 7 Must be recessive

3



Table 2: CAN 2.0B Message Frame
Field Length (bits) Description
Start of Frame (SOF) 1 Must be dominant
Identifier – Standard and Extended
Formats

11 Unique identifier corresponds to Base ID in Extended
Format

Identifier – Extended Format 29 Comprised of 11 bit Base ID and 18 bit Extended ID
Remote Transmission Request (RTR) –
Standard and Extended Formats

1 Dominant in data frames; recessive in remote frames. In
Standard Format, the 11 bit identifier is followed by the
RTR bit.

Substitute Remote Request (SRR) –
Extended Format

1 Must be recessive. SRR is transmitted in Extended
Frames at the position of the RTR bit in Standard
Frames. In arbitration between standard and extended
frames, recessive SRR guarantees the standard message
frame prevails.

IDE – Standard and Extended Frames 1 Must be recessive for Extended Format; dominant for
Standard Format.

Reserved r0 – Standard Format 1 Must be dominant
Reserved r1, r0 – Extended Format 2 Must be recessive
Data Length Code (DLC) 4 Number of data bytes (0–8)
Data Field 0–8 bytes Length determined by DLC field
Cyclic Redundancy Check (CRC) 15
CRC Delimiter 1 Must be recessive
Acknowledge (ACK) 1 Transmitter sends recessive; receiver asserts dominant
ACK Delimiter 1 Must be recessive
End of Frame (EOF) 7 Must be recessive

1.2.2 The CAN Data Frame

The CAN data frame is composed of seven fields: Start of frame (SOF), arbitration, control, data, cyclical
redundancy check (CRC), acknowledge (ACK) and end of frame (EOF). CAN message bits are referred to
as “dominant” (0) or “recessive” (1). The SOF field consists of one dominant bit. All network nodes waiting
to transmit synchronize with the SOF and begin transmitting at the same time. An arbitration scheme
determines which of the nodes attempting to transmit will actually control the bus.

Arbitration

The arbitration field of the CAN message consists of an 11- or 29-bit identifier and a remote transmission
(RTR) bit. The CAN arbitration scheme is called “carrier sense multiple access with collision detection”
or CSMA/CD, and assures that the highest priority message is broadcast. Message priority is determined
by the numerical value of the identifier in the arbitration field, with the lowest numerical value having the
highest priority. Non-destructive, bit-wise arbitration resolves conflicts among competing transmitters. This
means that the bus can be thought of as acting like an AND gate: If any node writes a dominant (0) bit on
the bus, every node will read a dominant bit regardless of the value written by that node. Every transmitting
node always reads back the bus value for each bit transmitted. If a node transmits a recessive bit and reads
back a dominant bit, it immediately stops transmitting. Arbitration is illustrated in Figure 3.

The RTR bit simply distinguishes between data frames and remote frames. In data frames, the RTR
bit must be dominant; in remote frames it must be recessive.

4



SOF

SOF

SOF

Node 1 loses arbitration

Node 1

Node 3

Node 2

Node 2 loses arbitration

Figure 3: CAN Arbitration: Node 3 has highest, and Node 1 the lowest, priority messages.

Control and Data Fields

The control field of the data frame consists of 6 bits (of which only the lower 4 are used) that indicate the
amount of data in the message. Since up to 8 bytes of data may be sent in one message, the control field
may take values ranging from 000000 to 000111. The data to be transmitted are contained in the data field.
The most significant bit (MSB) of a data byte is sent first.

Error Handling

CAN implements five levels of error detection. At the message level, it performs cyclic redundancy checks,
frame checks and acknowledgment checks. Bit level checks consist of monitoring and stuffing.

Cyclical redundancy errors are detected using a 15 bit CRC computed by the transmitter from the message
content. Each receiver accepting the message recalculates the CRC and compares it against the transmitted
value. A discrepancy between the two calculations causes an error flag to be set. Frame checks that will flag
an error are the detection by a receiver of an invalid bit in the CRC delimiter, ACK delimiter, EOF or 3-bit
interframe space. Finally, each receiving node writes a dominant bit into the ACK slot of the message frame
that is read by the transmitting node. If a message is not acknowledged (perhaps because the receiver has
failed), an ACK error is flagged.

At the bit level, we have already noted that each transmitted bit is “read back” by the transmitter. If
the monitored value is different than the value being sent, a bit error is detected. Additionally, bit errors
are detected by stuffing: After five consecutive identical bits have been transmitted, a bit of the opposite
polarity will be inserted (“stuffed”) by the transmitter into the bit stream (bits are stuffed from the SOF
through the CRC field). Receivers automatically “de-stuff” the message. If any node detects six consecutive
bits of the same level, a stuff error is flagged. In addition to error detection, bit stuffing assures that there
are enough edges in the non-return to zero (NRZ) bit stream to maintain synchronization.

1.2.3 The CAN Error Frame

If a transmitting or receiving node detects an error, it will immediately abort the transmission and broadcast
an error frame consisting of an error flag made up of six dominant bits and an error flag delimiter made
up of eight recessive bits. Since this bit string violates the bit stuffing rule, all other nodes respond by
transmitting error flags, too. After a sufficient number of errors are detected, a node will eventually turn
itself off. Robustness, especially in manufacturing and automotive environments where CAN is prevalent,
requires that the network determine whether errors are transient (due to voltage spikes, noise or some other

5



temporary condition) or permanent failure of the node due to defective hardware. Consequently, nodes store
and track the number of errors detected. A node may be in one of three modes depending on the error
count: If the count in either the transmit or receive buffer of a node is greater than zero and less than 128,
the node is considered “error active,” indicating that, although the node remains fully functional, at least
one error has been detected. An error count between 128 and 255 puts the node in “error passive” mode.
An error passive node will transmit at a slower rate by sending 8 recessive bits before transmitting again
or recognizing the bus to be idle. Error counts above 255 will cause the node to enter “bus off” mode,
taking itself off-line. Receive errors increment the error count by 1; transmit errors increment the count by
8. Subsequent error-free messages decrement the error count by 1. If the error count returns to zero, a node
will return to normal mode. A node in the bus off condition may become error active after 128 occurrences
of 11 consecutive recessive bits have been monitored. A message is considered valid by the transmitter if
there is no error until the EOF. Corrupted messages are automatically retransmitted as soon as the bus is
idle.

1.2.4 The CAN Remote Frame

A node that requires data from another node on the network can request a transmission by sending a Remote
Frame. For example, the microprocessor controlling the central locking on your car may need to know the
state of the transmission gear selector from the powertrain controller (is the car in “park?”). A remote frame
is the same as a data frame, without the data field (with the RTR bit recessive).

1.2.5 Overload Frames and Interframe Space

If a CAN node receives messages faster than it can process them, then an Overload Frame will be generated
to provide extra time between successive Data or Remote frames. Similar to an Error Frame, the Overload
Frame has two fields: an overload flag consisting of six dominant bits, and an overload delimiter consisting
of eight recessive bits. Unlike error frames, error counters are not incremented.

The Interframe Space consists of a three recessive bit Intermission and the bus idle time between Data
or Remote Frames. During the intermission, no node is permitted to initiate a transmission (if a dominant
bit is detected during the Intermission, an Overload Frame will be generated). The bus idle time lasts until
a node has something to transmit, at which time the detection of a dominant bit on the bus signals a SOF.

1.3 Bus Loading

CAN provides a robust, simple and flexible network solution for manufacturing, automotive and many other
applications. The major drawback to CAN is that message latency is non-determinant (due to the existence
of Error Frames, Overload Frames and retransmissions), and latency increases with the amount of traffic on
the bus. In general, bus utilization should not exceed 30% of the bus capacity to assure that low priority
messages do not experience unacceptable delay. Bus utilization is defined as total bit consumption / total
bits available, and is calculated as follows:

Step 1: Choose a time unit ≥ the slowest fixed periodic message on network (usually 1 second).

Step 2: Identify all periodic messages.

Step 3: For each of these messages approximate the total bit size of the message by adding 47 bits to the
size of each data field (SOF + Arbitration + RTR + Control + CRC + Acknowledgment + EOF +
Interframe Space = 1 + 11 + 1 + 6 + 16 + 2 + 7 + 3 = 47 bits).

Step 4: Calculate the message bits consumed by multiplying the message bit size by the number of trans-
missions performed in one time unit.

Step 5: Sum all the message bits consumed to estimate the total periodic bits consumed. Multiply this
number by a safety factor of 1.1 to account for worst case traffic.

6



Step 6: Finally, divide the total periodic bits consumed by the total bits available (for example, 125 kbps
or 500 kbps multiplied by the time unit) to arrive at the estimated bandwidth consumption percentage
for the network.

Table 2: Bus Loading Example
Message Data (bytes) Message Size (bits) Rate and Period Message Bits Consumed
MsgA 0 47 10 trx/s: 100 ms 10 · 47 = 470 bps
MsgB 5 5 · 8 + 47 = 87 2 trx/s: 500 ms 87 · 2 = 174 bps
MsgC 8 8 · 8 + 47 = 111 1 trx/s: 1 s 111 · 1 = 111 bps
· · · · · · · · · · · · · · ·

Total periodic bits consumed 10000 bps
Total Bits Consumed = 1.1·(Total Periodic Bits Consumed) = 11000 bps

Bandwidth Consumption = 11000/125000 = 8.8%

1.4 Time-triggered Protocols

For real-time control over a network it may be advisable to implement a communication protocol that
guarantees that messages meet timing deadlines regardless of the load on the bus. One such protocol that
retains the CAN data link layer protocol is “time-triggered CAN,” or TTCAN (ISO 11898-4) [7]. A TTCAN
message frame incorporates two types of “time windows”: exclusive time windows, and arbitrating time
windows. Exclusive time windows are assigned to specific messages that are transmitted periodically. Thus,
exclusive window messages do not compete for bus access. Arbitrating windows are used for messages that
are not time critical. Arbitrating window messages, like normal CAN messages, compete for bus access
based on priority through arbitration. Time-triggered CAN requires the existence of a “master node” that
periodically broadcasts its time (referred to as global time) in a reference message. For fault tolerance, there
must be multiple potential master nodes on the network. If the master node fails (detected by the absence
of a reference message), the other potential masters compete for the bus by arbitration, with the highest
priority node becoming the new master and broadcasting reference messages. Time-triggered CAN does not
re-broadcast corrupted messages, nor does it invoke Error Frames.

A competitive protocol to TTCAN is FlexRay, developed by a consortium of automotive manufacturers
and suppliers [8]. The FlexRay communication frame consists of periodically triggered “static” and “dy-
namic” parts. The static segment is made up of identical length time slots assigned to connected nodes.
Each node transmits its messages synchronously in its reserved slot. The static segment also transmits a
“synch” frame to provide a global timebase for the network. Unlike CAN, there is no arbitration for the bus.
The dynamic segment is essentially a “polling” mechanism wherein each node is given the opportunity to
put an event-triggered or asynchronous message on the bus in priority order using a “mini-slotting” timing
mechanism. That is, the slot counter increments through each identifier, but whereas in the static segment
the counter increments at a periodic rate whether or not there is a message in each slot, in the dynamic seg-
ment the counter waits only a brief period for each node to request transmission. If there is no transmission
request for a message with a particular slot identifier, the counter continues to increment; if a transmission
request occurs, the counter idles until the transmission is complete.

For redundant fault tolerance, FlexRay nodes may be connected to two buses, or channels simultaneously.

References

[1] Nicolas Navet, Yeqiong Song, Françoise Simonot-Lion, and Cédric Wilwert, “Trends in Automotive
Communication Systems,” Proceedings of the IEEE, Vol. 93, NO. 6, June 2005 Page(s):1204 - 1223

[2] Gabriel Leen and Donal Heffernan, “Expanding Automotive Electronic Systems,” IEEE Computer Vol-
ume 35, Issue 1, Jan. 2002 Page(s):88 - 93

7



[3] Jeffrey Cook, Ilya Kolmanovsky, David McNamara, Edward Nelson and K. Venkatesh Prasad, “Control,
Computing and Communications: Technologies for the Twenty-first Century Model T,” Proceedings of
the IEEE, February 2007.

[4] J.M. Eklund, J. Sprinkle, S. Sastry and T.R. Hansen, “Information Technology for Assisted Living at
Home: building a wireless infrastructure for assisted living,”IEEE-EMBS 2005 27th Annual International
Conference of the Engineering in Medicine and Biology Society, Sept. 2005 page(s): 3931- 3934.

[5] CAN in Automation Website, http://www.can-cia.org, viewed September 2006.

[6] Robert Bosch GmbH, “CAN Specification 2.0,” 1991.

[7] Holger Zeltwanger, “Time-Triggered Communication on CAN,” SAE Paper 2002-01-0437, 2002.

[8] Thomas Fuehrer, Robert Hugel, Florian Hartwich and Harald Weiler, “FlexRay - The Communication
System for Future Control Systems in Vehicles,” SAE Paper 2003-01-0110, 2003.

8


