Name:

EECS 470 Winter 2024

Homework 1
Due Thursday, January 18 by 10pm.
Homework turned in late but by the 19™ at noon will get 75% credit.

unigue name:

Assignments that are difficult to read will lose at least 50% of the possible points and we may not grade them at all. This is
an individual assignment; all work should be your own.

If you use references other than the text and class notes, be sure to cite them!

This assignment is worth about 2% of your grade in the class and is graded out of 100 points.
Remember you may drop one homework assignment or quiz score.

Please state any assumptions.

1. Understanding Pipelines. Consider the following code segment. Assume the branch is taken more than 99.9% of the
time. [16 points]

Loop: LD R1, 0(R2) ; R1=MEM[R2+0]
DADDI R1, R1, #1 ; R1=R1+1
SD 0(R2),R1 ; MEM[R2+0]=R1

DADDI R2, R2, #4 ; R2=R2+4
DSUB R4, R3, R2 ; R4=R3-R2
BNEZ R4, Loop ; 1f(R4!=0) goto Loop

a. Show the timing of the above instruction sequence on the RISC pipeline in Appendix C of our text. Assume
there is no forwarding but that a read and write in the same clock cycle “forwards” through the register file.

Your answer should be drawn similarly to figure C.10 on page C-21. Memory accesses take one cycle and there

is separate instruction and data memory. Branches are predicted not-taken. Branches are resolved in the decode
stage. [3]

. As part “a” but assume normal forwarding and bypassing. Stalls due to dependencies occur in the ID stage. [5]

c. Assume the RISC pipeline with a single-cycle delayed branch (a.k.a. “branch delay slot”) and normal

forwarding and bypassing hardware. Schedule the instruction including the branch delay slot as efficiently as
possible. You may reorder the instructions and modify the individual instruction operands, but do not change
the number or opcode of the instructions. Again provide a timing diagram and indicate the number of cycles
needed for a single iteration of the loop. [8]

2. Cache Design. Consider an 4 MB 8-way set-associative cache with 32-byte lines. Both the virtual and physical address
spaces are 32 bits in size. [8 points]

a. How many bits are used for the tag, set index, and byte offset respectively? [2]
b. How many bytes (total) are used to store the tags for this cache? [2]
c. What would your answer to b) be if the cache were fully-associative? Direct-mapped? [4]

3. Cache Details. Consider a 1KB cache with a 16-byte block size. Assume all entries in the cache start as “invalid” and
the address spaces are 16-bits. [13 points]

a. Assuming the cache is 2-way associative, for each address in the (load) address stream indicate if the access is a

hit or miss. Ifit is a miss, indicate which type of miss (from the 3C’s) itis. Assume all requests are for 1 byte.
0x4001, 0x400A, 0x4017, 0x1000, 0x2000, 0x4000, 0x2005, 0x4008.[5]

b. Identify as short a memory access pattern as possible (specific addresses) for the cache described above where a

direct-mapped cache will get a better hit-rate than a two-way associative cache. Make it so that the sum of the
addresses is as small as possible. [4]

c. ldentify as short a memory access pattern as possible (specific addresses) for the cache described above where a

two-way associative cache will get a better hit-rate than a direct-mapped cache. Make it so that the sum of the
addresses is as small as possible. [4]

ISA Design [15 points]
a. Give two examples of characteristics that distinguish RISC from CISC architectures. [2]
b. For each of the following sets of terms define each term and write a sentence that explains how they relate. [6]
o Register pressure, register spill, register fill.

c. Say you have an “addi” instruction with the format “addi rx, ry, constant” where rx and ry are register numbers
and the constant is a 16-bit 2°s complement number. Assuming instructions are all 32 bits in size and there are
32 registers, what percent of all possible instruction encodings is used by this instruction? [4]

d. State two disadvantages of having very large (1000’s of entries) register files and one advantage. [3]

Multicore and power. Suppose that the code to run a transaction is 80% perfectly parallelizable (such that performance
scales linearly with the number of cores), while the remaining 20% is purely serial (can only run on one core) and only
one transaction can be run at a time. The company is evaluating three chips: [11 points]
e asingle-core chip that draws 100W of power;
¢ a 135W quad-core chip where each core has a “speedup” of 0.7 over the single-core chip
e a 150W 8-core chip where each core has a “speedup” of 0.5 over the single-core chip
a) Suppose the application runs at 1000 transactions per second on the single-core chip. How many transactions
per second does it achieve on quad-core? The 8-core? [6]
b) On average how much energy (Joules) per transaction is required by each chip? Which chip is most energy
efficient? [3]
c) Redo part b assuming that the transactions are 100% parallelizable. [2]

Digital Logic Design. Consider the following Moore-type state-machine: [6 points]

1B

B T A*B

‘__/////

I(A*B)

Draw a circuit diagram which implements this state-machine. You are to use only 2-input AND, OR and XOR
gates, inverters, and D flip-flops. The inputs are not available in inverted form. Be sure to include a clock input.

Parallel programming Your friend has been tasked with writing a function called “increment()”. The function is
suppose to increment a global variable called “count” that may be shared by multiple threads/processes. He’s written
the following in a C-like language. The idea is that any thread/process that wants to change count will have to call this

function. Assume “lock” is also a global (and volatile) variable. [15 points]
int increment ()

{
while (lock); //This stays here until lock==
lock=1l;
count=count+l;
lock=0;
}

Why is a lock needed? What is your friend trying to do? [3]

Why won’t the above code work? (you can assume “lock” is initialized to zero) [3]

c. Say we have a function called TAS that implements an atomic test-and-set (see
http://en.wikipedia.org/wiki/Test_and_set). It takes a pointer to the variable to be used and returns a 0 if it
succeeds in getting the lock. Rewrite your friend’s code to use TAS.

(prototype is “int TAS(int * A)”). Explain why your solution solves the problem(s) you found in your friend’s
code. [6]
d. Answer the following: (Each can be answered in just a few words). [3]
a. Why is it important that lock and count be declared “volatile”?
b. What impact, if any, does the “volatile” declaration have on how we cache things?
c. What impact, if any, does the “volatile” declaration have on how complier optimizations?

o e

http://en.wikipedia.org/wiki/Test_and_set

8. Miisc stuff. The following questions are not part of any prerequisite material, nor will it be covered in class before the
homework is due, but related material will show up. Each should be fairly easy to answer given a few minutes of on-line
research. [16]

a. Innanoseconds, what the period of a 2GHz clock? In picoseconds? How far does light (in a vacuum) travel in
that time? [1]
b. Power [4]
e Finish the following rhyme : “Twinkle Twinkle little star, power is I squared
o What is the difference between dynamic and static power?
e Dynamic power is generally listed as being proportional to CV?f.
1. Whatare C, V and f in this context?
2. Why might one say that dynamic power is proportional to performance cubed? (Guess if you
must, you’ll only lose points if you don’t make a reasonable try.)
c. What are SPECint and SPECfp? Explain their relevance to computer architecture. [3]
d. Describe how the resistance of a wire changes (by how much and in what direction) as [4]
e The wire gets twice as long
e The (round) wire has twice the diameter.
e The (rectangular) wire has twice the width but the same height
e The wire changes from tin to copper.
e. Read all of https://en.wikipedia.org/wiki/Spectre_(security vulnerability). Write a one paragraph summary of
what the attack is about. It is fine if you don’t fully understand, just read it and do your best—we will accept
any reasonable effort. [4]

2

https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)

