
EECS 470, Winter 2024, Homework 2 answers.

1)

a) Main ones: There is a free reservation station. (You might also want to note that

the instruction needs to have been fetched.)

b) Main ones: There is a free reservation station (not needed if mentioned above);

any branch in front of the instruction has been completed.

c) Main ones: All of its arguments are ready, an execution unit is available, and the

instruction gets selected (others might also be wanting the same execution unit).

d) Main ones: Execution is completed, CDB is available.

2)

Consider 100 instructions. Of those 100 instructions, 11 will be mispredicted

Branches (20%*55%*100). There is no reason to suspect bias in the distribution of

branches to which pipeline the data is in so half1 will squash 6 instructions, half will

squash 7. Thus, you have 11*6.5 = 71.5 "instructions" that are squashed, plus 100 slots

utilized to execute the 100 instructions. ~171.5 slots take up 171.5/2 = 85.75 cycles. So,

CPI= ~0.8575 and IPC= ~1.166.

3a)
P1=MEM[R2+0]

P2=MEM[R2+4]

Branch done if(P2==0)

P3=P1+R3

Branch start

P4=MEM[P2+0]

P5=MEM[P2+4]

Branch done if(P5==0)

P6=P4+P3

Branch start

P7=MEM[P5+0]

P8=MEM[P5+4]

Branch done if(P8==0)

Halt

3b)

It appears to be walking a linked list which includes a data element (MEM[R2+0]) as

well as a pointer to the next element in the list. It sums up all the data elements but the

last one.

4)

The gselect predictor uses a concatenation of bits from the branch PC and global history

register as the index. Both bimodal and global history predictors are degenerate cases

because gselect is bimodal when we use all the bits of PC and 0 bits from global history,

and gselect is a global history predictor when we use all bits of global history register and

0 from PC. So, both bimodal and global history are manifestations of gselect. Gselect-

1 Okay, there is a very slightly higher chance of being in the first, but we’ll ignore it.

best is the combination of PC and global history bits that gives the best prediction rates.

The authors in the paper run a set of simulations to find out the best combination of PC

and global history bits. Since Gselect-best uses the best combination of PC and global

history bits, it will perform at least as well as a bimodal or global history predictor.

5)

a) 100% (no aliasing in the pattern)

b) 60% (mispredicts twice very loop since the PHT is only 1 bit. So 2/5 are predicted

incorrectly)

c) 66% (still mispredicts twice every loop, but now there are 6 predictions per loop,

so 2/6 are predicted incorrectly).

6)

Instruction FD X W
A: LD 0(R1),F2 1 3 4
B: MULTD F0,F2,F4 4 9 10
C: ADDD F2,F4,F6 10 12 13
D: LD 8(R1),F4 13 15 16
E: MULTD F0,F4,F10 16 21 22
F: ADDD F2,F2,F2 22 24 25
G: ADDD F0,F2,F2 25 27 28
H: SD 8(R1),F2 28 29 30
I: ADDDI F0, #16, F0 30 32 33
J: DIVDI F10, #3, F12 33 43 44
K: BNEQ F6,F12,A 44 45 46

7a) Note: It is okay to omit the red arrows which indicate dependencies that go across

loops. Putting I(2) by itself with no dependents is still correct.

 A(2) I(2) D(2)

F(2) B(5) E(5)

G(2) C(2) J(10)

H(1) K(1)

7b)

Instruction Has all

data

Start EX End EX Writeback

A: LD 0(R1),F2 1 2 3 4
D: LD 8(R1),F4 1 2 3 4
I: ADDDI F0, #16, F0 1 2 3 4

B: MULTD F0,F2,F4 4 5 9 10
E: MULTD F0,F4,F10 4 5 9 10
F: ADDD F2,F2,F2 4 5 6 7
G: ADDD F0,F2,F2 7 8 9 10
C: ADDD F2,F4,F6 10 11 12 13
H: SD 8(R1),F2 10 11 11 12
J: DIVDI F10, #3, F12 10 11 20 21
K: BNEQ F6,F12,A 21 22 22 23

8)

a) First note that another (and better) way to do the same thing is to not let any

instruction following a branch issues into the RSes until there is no unresolved

branch in the RSes.

But either way, the issue is that the original Tomasulo’s algorithm had no way of

preventing an instruction younger than the branch from modifying architectural

state (e.g a general-purpose register). If the branch were mispredicted, we’d have

no clear way to undo that change.

b) Every branch instruction will stall following instructions and limit the number of

instructions in the pipeline. Even if other instructions could start executing, they

are not able to.

c) An exception is an uncommon or undesirable execution case which the program

cannot handle and must control to some software handler to deal with it. Some

examples of load exceptions include:

a. Invalid address (ex: misaligned address)

b. Permission error (current process is not allowed to access address)

c. Page fault (need to go to disk to retrieve the necessary page)

d) If an exception in a load occurs, the code is going to end up branching to some

handler. So the load is, in effect, a branch when an exception occurs.

e) A reorder buffer tracks the ordering of instructions and only commits them to the

physical state once it knows that it is safe to do so. In the case of an exception,

you can clear every instruction following the exception-causing one so that you

do not execute anything you should not have. Since you have the ability to discard

results before they are permanently committed to the architected state, you can

start execution before the branch or load finishes.

