
EECS 470 Homework 3, Fall 2021 answers.

1.
a. The BTB target address could change if the branch’s target address were

to change. This could happen if we had an indirect branch.
b. As the branch is a “hit” (in the BTB) the tag could not change.
c. If the branch was predicted weakly taken it could change to strongly

taken. In no other case would it change.
d. You’d expect it to change unless it currently has all 1s (taken) in the

history.
e. If the branch was predicted weakly taken it could change to strongly

taken. In no other case would it change.
f. Both local and global have the same prediction, so no change.
g. You’d expect it to change unless it was currently all 1s (taken) in the

history.

2. Having a larger set of architected can help if you have a large number of “live
values”. That is values we have and will need in later computations. If you have
enough architected registers, those values can be left in the architected
registers. Otherwise you need to “spill” those values to memory (the stack) and
“fill” them later when needed.

Put another way, architected registers are a way for the programmer/complier
to name things and keep them around without using loads and stores. Physical
registers are not visible to the programmer/complier and cannot be so used.

3. Since the load stalls for a long time, we have to see if we first encounter a
structural hazard due to the RS being full or the ROB being full. The ROB will be
full once we hit the 6th instruction no matter what (until the load finishes). The
RS will become full if there are 3 instructions that cannot execute due to data
dependencies on the load.

In program A, there is only one instruction within the first 6 of the program that
has a dependency on the load (R4=R1+6). So, the ROB will fill up before the RS
and the last instruction to enter the ROB is the 6th instruction: R6=R2+R6.

For program B, the second instruction (that writes to R2) is dependent on the
load, and the 4th and 5th instructions are dependent on R2 written by the second
instruction. Therefore, the RS fills up at the 5th instruction, and the last
instruction that gets placed in the ROB before the load finishes is the 5th
instruction: R1=R2+R3.

brehob
Rectangle

Tables below shows full execution time
Assuming 1 cycle latency for multiplies:

Inst Dispatch Issue Execute Complete Retire
A: R3=R2+R1 1 2 3 4 5
B: R1=R1*R3 2 4 5 6 7
C: R3=R1+R3 3 6 7 8 9
D: R2=R4*R2 4 5 6 9* 10
E: R5=R3+R4 5 8 9 10 11

*stalls due to structural hazard with CDB in cycle 8

Assuming 2 cycle latency for multiplies.

Inst Dispatch Issue Execute Complete Retire
A: R3=R2+R1 1 2 3 4 5
B: R1=R1*R3 2 4 5 7 8
C: R3=R1+R3 3 7 8 9 10
D: R2=R4*R2 4 5 6 7 8
E: R5=R3+R4 5 9 10 11 12

5.

Index Predictor Index Predictor
0 11 8 00 01
1 11 9 10
2 00 10 11
3 11 11 10 11
4 01 12 11
5 00 13 00
6 10 14 01 00
7 01 10 15 01

.
6.

a. In the algorithm we are calling R10K, when using an RRAT we will free all PRF
entries / no PRF entries / those PRF entries which aren’t pointed to by the RRAT /
those PRF entries in the RAT that are overwritten by the RRAT when a branch
mispredict occurs.

b. If, in the algorithm we are calling P6, the RAT had only one port for writing values,

you could only have one instruction that writes a register dispatch / issue / complete
execution / retire per cycle.

c. If, in the algorithm we are calling R10K, the PRF had only one write port, you could
only have one instruction that writes a register dispatch / issue / complete execution /
retire per cycle.

d. In the original Tomaulo’s algorithm, the RAT points to a reorder buffer entry / a
reservation station / a physical register / an execution unit.

e. The branch target buffer is a(n) address / confidence / direction predictor that has
particular problems with function calls / conditional branches / returns from
functions / indirect branches. To help with that case we might add a(n) Translation
Lookaside Buffer (TLB) / Reorder Buffer (RoB) / Alias Table List Address Selector
(ATLAS) / Return Address Stack (RAS).

f. In the algorithm we are calling R10K, if you have 32 RoB entries, 16 architected
registers, 8 RS entries and a 4KB instruction-cache, you will not have a use for more
than 8 / 16 / 32 / 48 / 64 PRF entries.

g. Given a 4-KB four-way associative cache with 16-byte cache lines and a 32-

bit address space there will be __6_____ bits used for the index. If that same

cache were direct-mapped you’d need ___20____ bits to be used for the tag.

h. In the P6 algorithm, a processor with 2 RSes, 16 RoB entries, and 8 architected
registers would have a RAT whose size in bits is 10 / 16 / 20 / 32 / 40 / 96 / 128
ignoring state bits (like valid etc.). If that same design were using the algorithm
we’ve called R10K, the RAT would have 10 / 16 / 20 / 32 / 40 / 96 / 128 bits (again
ignoring state bits).

