
EECS 470 Winter 2024

Homework 5
Due Tuesday April 23rd by 10:00pm.

This is an individual assignment; all of the work should be your own. Assignments that are difficult to

read will lose at least 50% of the possible points and we may not grade them at all. If you use references

other than the text and class notes, be sure to cite them!

1. A compiler for IA-64 has generated the following sequence of three instructions:

 L.D F0,0(R1) ; F0=Mem[R1+0]

(p1) DADD R1,R2,R3 ; if (p1) then R1=R2+R3

(p2) DSUB R5,R1,R4 ; if (p2) then R5=R1-R4

where p1 and p2 are two predicate registers that are set earlier in the program. Assume

that the three instructions are to form a bundle. What are the possible templates that the

compiler could use for the bundle? Under what circumstances would each template be

chosen? Think about relations that might be known at compile time between p1 and

p2. [20 points]

See http://www.eecs.umich.edu/eecs/courses/eecs470/HW/AppG.pdf for information on

bundles.

2. Say you are the head architect at "Computers R Us" and your main product is a processor

that executes 15 BIPS (billions of instructions per second) and runs at 100 Watts. You

have a few teams of interns that have proposed some improvements to the architecture of

this processor in order to save power. Which of these might be worth considering and

why? For purposes of this question assume voltage scaling by X reduces performance by

X and power by X3. [15 points]

a. A fairly trivial change to the cache system that drops performance to 14 BIPS

while it drops power to 90 Watts. [5]

b. A fairly complex change to the out-of-order core that drops performance to 12

BIPS while it drops power to 50 Watts. [5]

c. A very trivial change to the predictor (making it smaller) and the L2 cache

(reducing leakage current of some transistors) that drops performance to 13.0

BIPS while it drops power to 50 Watts. [5]

http://www.eecs.umich.edu/courses/eecs470/HW/AppG.pdf

3. Consider the following C code:

for (i = 0; i < MAX; i++)

{

 a[i] = a[i] + b[i];

}

That C code is translated into the following x86-like assembly code:

(note: the ++ indicates the autoincrement addressing mode.)

 mov r1, addr(a) -- address of a[0] into r1

 mov r2, addr(b) -- address of b[0] into r2

 mov rx, MAX -- Number of iterations into rx

l1: ld r3, (r1) -- load indirect into r3 through r1

 ld r4, (r2)++ -- what r2 points to loaded in r4

 fadd r5, r3, r4 -- r5 holds sum of two elements

 st r5, (r1)++ -- store result and post-increment

 loop l1 -- does an autodecrement (by 1) of rx

 -- if rx isnt zero branches to l1

And then that assembly code is software pipelined.

 -- Initialization:

 mov r0, addr(a) -- r0 is pointer to a[0]

 mov r1, r0 -- copy address of a[0] into r1

 mov r2, addr(b) -- r2 is pointer to b[0]

 ___blank A______

 ___blank B______

 ___blank C______

 fadd r5, r3, r4

 ld r3, (r1)++

 ld r4, (r2)++

l2: st r5, (r0)++

 fadd r5, r3, r4

 ld r3, (r1)++

 ld r4, (r2)++

 loop l2 -- decrement rx, if != 0 jump to l2

 ___blank D______

 fadd r5, r3, r4

 st r5, (r0)

Answer the following [23 points]

a. Supply the missing code for each blank [18]

b. If, in the original C code, MAX is less than ________ the software-pipelined loop

will behave incorrectly. [5]

4. IBM (IanBraMus Inc). has just released a new 4-core processor that uses a shared snoopy

bus. Each core has a 4-way associative, 64KB cache with 32-byte cache lines and keeps

data in the M, S or I state. There is a shared, on-chip, L2. On a given benchmark the

following is true of each core:
o One fourth of the processor’s memory transactions to the cache are stores (the

rest being loads).

o 95% of loads and 95% of stores don’t generate a bus transaction.

o 20% of all evictions are of dirty data.

o Each core sends 95 million transactions on the bus per second. 5 million of

those are BILs.

Answer the following questions. You are to assume that the cores aren’t bandwidth

limited. [22 points]

a. How many transactions per second would you expect of each of BRIL, BRL, and

BWL on the bus? [10]

b. If we were to add an “E” state to the processor, for which transactions types

would the rate of transactions be impacted? How would they be impacted (go up

or go down)? Explain your answer. [6]

c. A co-worker sees that the “E” state is helpful but that your current product line

doesn’t support it. They propose to use MSI but to go to the “M” state when

MESI would go to the “E” state (where MSI generally goes to the S state). For

which transactions types would the rate of transactions be impacted? How would

they be impacted (go up or go down)? Explain your answer. [6]

5. Read On Pipelining Dynamic Instruction Scheduling Logic and answer the following

questions: [20 points]

a. In your own words, explain what problem this paper is trying to solve. [5]

b. Consider figure 4. Describe what this is doing using the terminology we’ve used

in class. [4]

c. Consider figure 7 and 8. Explain, in your own words: [6]

▪ What is happening in the "Reg Read" stage and how that differs from how

register reading was dealt with in class.

▪ How the SUB can wakeup before the XOR completes execution

▪ What "Execute/Bypass" means.

▪ What the difference is between figure 7 and 8.

d. For your project, you have two basic options: [5]

▪ Do the select/issue/execute/CDB in one cycle

▪ Pipeline this process.

Which of those two did your group do? If the first, is this on your critical path? If the

second, do you deal with back-to-back dependent instructions?

http://courses.cs.washington.edu/courses/cse590g/01wi/stark.pdf

