
EECS 470 Lab 1
Verilog: Hardware Description Language

Department of Electrical Engineering and Computer Science
College of Engineering
University of Michigan

January 11, 2024

(University of Michigan) Lab 1: Verilog January 11, 2024 1 / 60

Overview

EECS 470

Verilog

Verilog Flow Control

Testing

Project 1

Lab Assignment

(University of Michigan) Lab 1: Verilog January 11, 2024 2 / 60

EECS 470

Help?

▶ Contact Information
▶ EECS 470 Staff Email - eecs470staff@umich.edu
▶ Emails sent to the above address will go to all instructors so we can

respond to your questions faster.
▶ EECS 470 Piazza (click for link)

▶ Most of your project related questions should be asked here so that
other people can benefit from the answer.

▶ Reminder: Please do not post program code in public questions.

▶ See up-to-date office hours on the course website.

(University of Michigan) Lab 1: Verilog January 11, 2024 3 / 60

mailto:@umich.edu
https://piazza.com/class/lr9fclnckiy7pe
http://www.eecs.umich.edu/eecs/courses/eecs470

EECS 470

Where? When?

▶ Due to the completely online nature
▶ Labs will be released shortly before the start of the first lab each week.
▶ A recording of the lab will be released at the end of each week.
▶ Please refer to the slides and recording for demonstrations and tips!

▶ Lab attendance is optional but strongly recommended!
▶ Two Lab Sections

▶ 011 – Friday 10:30 am to 12:30 pm (BBB 1620)
▶ 012 – Friday 4:30 pm to 6:30 pm (GGBL 2517)
▶ 013 – Friday 2:30 pm to 4:30 pm (GGBL 2517)

▶ You can attend any of the lab sections. If the lab becomes very busy,
please try to attend your own lab section hours (within reason).

▶ Labs assignments must be checked off during a live meeting with an
instructor. If you are unable to get checked off during lab, you can also
get checked off during any office hours.

▶ Labs are due by the end of lab the week after they are assigned.

(University of Michigan) Lab 1: Verilog January 11, 2024 4 / 60

EECS 470

What?

Lab 1 – Verilog: Hardware Description Language
Lab 2 – The Build System
Lab 3 – Writing Good Testbenches
Lab 4 – Revision Control
Lab 5 – Scripting
Lab 6 – SystemVerilog

(University of Michigan) Lab 1: Verilog January 11, 2024 5 / 60

EECS 470

Projects

Individual Verilog Projects

Project 1 – Priority Selectors (1%)
Project 2 – Pipelined Multiplier, Integer Square Root (2%)
Project 3 – Verisimple 5-stage Pipeline (5%)

Group Project

Project 4 – Out-of-Order Processor (35%)

(University of Michigan) Lab 1: Verilog January 11, 2024 6 / 60

EECS 470

Advice

▶ These projects will take a non-trivial amount of time, especially if
you’re not a Verilog guru.

▶ You should start them early. Seriously. . .
▶ Especially Project 3!

(University of Michigan) Lab 1: Verilog January 11, 2024 7 / 60

EECS 470

Project 4

▶ RISCV-V ISA
▶ An open source ISA that has commercial products
▶ Better software support, education friendly and has various extensions

that include additional functionality
▶ Groups of 5 to 6

▶ Start thinking about your groups now
▶ You’ll be spending hundreds of hours together this semester, so work

with people with whom you get along.
▶ Heavy Workload

▶ 100 hours/member, minimum
▶ 150 to 300 hours/member, more realistically
▶ This is a lower bound, not an upper bound. . .

▶ Class is heavily loaded to the end of the term

(University of Michigan) Lab 1: Verilog January 11, 2024 8 / 60

EECS 470

Administrivia

▶ Homework 1 is due Thursday, 18thth January, 2024 11:59 PM (turn in
via Gradescope)

▶ Project 1 is due Tuesday 23rdth January, 2024 11:59 PM (turn in via
submission script)

▶ Lab 1 is due Friday, 19thth January, 2024 11:59 PM (turn in via
gradescope)

(University of Michigan) Lab 1: Verilog January 11, 2024 9 / 60

Verilog

Intro to Verilog

What is Verilog?
▶ Hardware Description Language - IEEE 1364-2005

▶ Superseded by SystemVerilog - IEEE 1800-2009
▶ Two Forms

1. Behavioral
2. Structural

▶ It can be built into hardware. If you can’t think of at least one
(inefficient) way to build it, it might not be good.

Why do I care?
▶ We use Behavioral Verilog to do computer architecture here.
▶ Semiconductor Industry Standard (VHDL is also common, more so in

Europe)

(University of Michigan) Lab 1: Verilog January 11, 2024 10 / 60

Verilog

The Difference Between Behavioral and Structural Verilog

Behavioral Verilog
▶ Describes function of design
▶ Abstractions

▶ Arithmetic operations
(+,-,*,/)

▶ Logical operations
(&,|,ˆ,~)

Structural Verilog
▶ Describes construction of

design
▶ No abstraction
▶ Uses modules, corresponding

to physical devices, for
everything

Suppose we want to build an adder?

(University of Michigan) Lab 1: Verilog January 11, 2024 11 / 60

Verilog

Structural Verilog by Example

a◦
b◦

w_1

w_2

w_0

cin◦
◦s

◦cout

u0
u1

u2

u3

u4

Figure: 1-bit Full Adder

(University of Michigan) Lab 1: Verilog January 11, 2024 12 / 60

Verilog

Structural Verilog by Example

module one_bit_adder(
input wire a,b,cin,
output wire sum,cout);
wire w_0,w_1,w_2;
xor u0(w_0,a,b);
xor u1(sum,w_0,cin);
and u2(w_1,w_0,cin);
and u3(w_2,a,b);
or u4(cout,w_1,w_2);

endmodule

(University of Michigan) Lab 1: Verilog January 11, 2024 13 / 60

Verilog

Behavioral Verilog by Example

module one_bit_adder(
input wire a,b,cin,
output wire sum,cout);
assign sum = a ^ b ^ cin;
assign cout = ((a ^ b) & cin) | a & b;

endmodule

(University of Michigan) Lab 1: Verilog January 11, 2024 14 / 60

Verilog

Behavioral Verilog by Example

module one_bit_adder(
input logic a,b,cin,
output logic sum,cout);

always_comb
begin

sum = a ^ b ^ cin;
cout = 1'b0;
if ((a ^ b) & cin) | (a & b))

cout = 1'b1;
end

endmodule

(University of Michigan) Lab 1: Verilog January 11, 2024 15 / 60

Verilog

Verilog Semantics

Lexical
▶ Everything is case sensitive.
▶ Type instances must start with A-Z,a-z,_. They may contain

A-Z,a-z,0-9,_,$.
▶ Comments begin with // or are enclosed with /* and */.

(University of Michigan) Lab 1: Verilog January 11, 2024 16 / 60

Verilog

Data Types

Synthesizable Data Types

wires Also called nets

wire a_wire;
wire [3:0] another_4bit_wire;

▶ Cannot hold state

logic Replaced reg in SystemVerilog

logic [7:0] an_8bit_register;
reg a_register;

▶ Holds state, might turn into flip-flops
▶ Less confusing than using reg with combinational logic

(coming up. . .)

(University of Michigan) Lab 1: Verilog January 11, 2024 17 / 60

Verilog

Data Types

Unsynthesizable Data Types

integer Signed 32-bit variable
time Unsigned 64-bit variable
real Double-precision floating point variable

(University of Michigan) Lab 1: Verilog January 11, 2024 18 / 60

Verilog

Types of Values

Four State Logic

0 False, low
1 True, high
Z High-impedance, unconnected net
X Unknown, invalid, don’t care

(University of Michigan) Lab 1: Verilog January 11, 2024 19 / 60

Verilog

Values

Literals/Constants
▶ Written in the format <bitwidth>’<base><constant>
▶ Options for <base> are. . .

b Binary
o Octal
d Decimal
h Hexadecimal

assign an_8bit_register = 8'b10101111;
assign a_32bit_wire = 32'hABCD_EF01;
assign a_4bit_logic = 4'hE;

(University of Michigan) Lab 1: Verilog January 11, 2024 20 / 60

Verilog

Verilog Operators
Arithmetic

* Multiplication
/ Division
+ Addition
- Subtraction
% Modulus

** Exponentiation
Bitwise

~ Complement
& And
| Or

~| Nor
ˆ Xor

~ˆ Xnor
Logical

! Complement
&& And
|| Or

Shift
>> Logical right shift
<< Logical left shift

>>> Arithmetic right shift
<<< Arithmetic left shift

Relational
> Greater than

>= Greater than or equal to
< Less than

<= Less than or equal to
!= Inequality

!== 4-state inequality
== Equality

=== 4-state equality
Special

{,} Concatenation
{n{m}} Replication

?: Ternary

(University of Michigan) Lab 1: Verilog January 11, 2024 21 / 60

Verilog

Setting Values

assign Statements
▶ One line descriptions of combinational logic
▶ Left hand side must be a wire (SystemVerilog allows assign statements

on logic type)
▶ Right hand side can be any one line verilog expression
▶ Including (possibly nested) ternary (?:)

Example

module one_bit_adder(
input wire a,b,cin,
output wire sum,cout);
assign sum = a ^ b ^ cin;
assign cout = ((a ^ b) & cin) | a & b;

endmodule

(University of Michigan) Lab 1: Verilog January 11, 2024 22 / 60

Verilog

Setting Values

always Blocks
▶ Contents of always blocks are executed whenever anything in the

sensitivity list happens
▶ Two main types in this class. . .

▶ always_comb
▶ implied sensitivity lists of every signal inside the block
▶ Used for combinational logic. Replaced always @*

▶ always_ff @(posedge clk)
▶ sensitivity list containing only the positive transition of the clk signal
▶ Used for sequential logic

▶ All left hand side signals need to be logic type.

(University of Michigan) Lab 1: Verilog January 11, 2024 23 / 60

Verilog

Always Block Examples

Combinational Block

always_comb
begin

x = a + b;
y = x + 8'h5;

end

Sequential Block

always_ff @(posedge clk)
begin

x <= next_x;
y <= next_y;

end

(University of Michigan) Lab 1: Verilog January 11, 2024 24 / 60

Verilog

Blocking vs. Nonblocking Assignments

Blocking Assignment
▶ Combinational Blocks
▶ Each assignment is

processed in order, earlier
assignments block later ones

▶ Uses the = operator

vs.

Nonblocking Assignment
▶ Sequential Blocks
▶ Uses the <= operator
▶ All assignments occur

“simultaneously”
▶ Requiring delays on

non-blocking assignments
(using ‘|’) is a common
myth, and should only
be done if you want a
30% simulation
performance hit or if
you use mixed RTL and
gate-level
simulations.*

*http://sunburst-design.
com/papers/
CummingsSNUG2002Boston_
NBAwithDelays.pdf

(University of Michigan) Lab 1: Verilog January 11, 2024 25 / 60

http://sunburst-design.com/papers/CummingsSNUG2002Boston_NBAwithDelays.pdf
http://sunburst-design.com/papers/CummingsSNUG2002Boston_NBAwithDelays.pdf
http://sunburst-design.com/papers/CummingsSNUG2002Boston_NBAwithDelays.pdf
http://sunburst-design.com/papers/CummingsSNUG2002Boston_NBAwithDelays.pdf

Verilog

Blocking vs. Nonblocking Assignment by Example

Blocking Example
always_comb
begin

x = new_val1;
y = new_val2;
sum = x + y;

end
▶ Behave exactly as expected
▶ Standard combinational logic

new_val1
x

new_val2
y

sum

Figure: Timing diagram for the
above example.

(University of Michigan) Lab 1: Verilog January 11, 2024 26 / 60

Verilog

Blocking vs. Nonblocking Assignment by Example

Nonblocking Example
always_ff @(posedge clock)
begin

x <= new_val1;
y <= new_val2;
sum <= x + y;

end
▶ What changes between

these two examples?
▶ Nonblocking means that

sum lags a cycle behind
the other two signals

clock
new_val1

x
new_val2

y
sum

Figure: Timing diagram for the above example.

(University of Michigan) Lab 1: Verilog January 11, 2024 27 / 60

Verilog

Blocking vs. Nonblocking Assignment by Example

Bad Example
always_ff @(posedge clock)
begin

x <= y;
z = x;

end
▶ z is updated after x
▶ z updates on negedge

clock

clock
reset

x
y
z

Figure: Timing diagram for the
above example.

(University of Michigan) Lab 1: Verilog January 11, 2024 28 / 60

Verilog

Synthesis Tips

Latches
▶ What is a latch?

▶ Memory device without a clock

▶ Generated by a synthesis tool when a net needs to hold state without
being clocked (combinational logic)

▶ Generally bad, unless designed in intentionally
▶ Unnecessary in this class

(University of Michigan) Lab 1: Verilog January 11, 2024 29 / 60

Verilog

Synthesis Tips

Latches
▶ Always assign every variable on every path
▶ This code generates a latch
▶ Why does this happen?

always_comb
begin

if (cond)
next_x = y;

end

(University of Michigan) Lab 1: Verilog January 11, 2024 30 / 60

Verilog

Synthesis Tips

Possible Solutions to Latches
always_comb
begin

next_x = x;
if (cond)

next_x = y;
end

always_comb
begin

if (cond)
next_x = y;

else
next_x = x;

end

(University of Michigan) Lab 1: Verilog January 11, 2024 31 / 60

Verilog

Modules

Intro to Modules
▶ Basic organizational unit in Verilog
▶ Can be reused

Module Example

module my_simple_mux(
input wire select_in, a_in, b_in; //inputs listed
output wire muxed_out); //outputs listed
assign muxed_out = select_in ? b_in : a_in;

endmodule

(University of Michigan) Lab 1: Verilog January 11, 2024 32 / 60

Verilog

Modules

Writing Modules
▶ Inputs and outputs must be listed, including size and type

format: <dir> <type> <[WIDTH-1:0]> <name>;
e.g. output logic [31:0] addr;

▶ In module declaration line or after it, inside the module

Instantiating Modules
▶ Two methods of instantiation

1. e.g. my_simple_mux m1(.a_in(a),.b_in(b),
.select_in(s),.muxed_out(m));

2. e.g. my_simple_mux m1(a,b,s,m);

▶ The former is much safer. . .
▶ Introspection (in testbenches): module.submodule.signal

(University of Michigan) Lab 1: Verilog January 11, 2024 33 / 60

Verilog

How to Design with Verilog

▶ Remember – Behavioral Verilog implies no specific hardware design
▶ But, it has to be synthesizable
▶ Better be able to build it somehow

(University of Michigan) Lab 1: Verilog January 11, 2024 34 / 60

Verilog

Keys to Synthesizability

Combinational Logic
▶ Avoid feedback (combinatorial loops)
▶ Always blocks should

▶ Be always_comb blocks
▶ Use the blocking assignment operator =

▶ All variables assigned on all paths
▶ Default values
▶ if(...) paired with an else

(University of Michigan) Lab 1: Verilog January 11, 2024 35 / 60

Verilog

Keys to Synthesizability

Sequential Logic
▶ Avoid clock- and reset-gating
▶ Always blocks should

▶ Be always_ff @(posedge clock) blocks
▶ Use the nonblocking assignment operator: <=

▶ No path should set a variable more than once
▶ Reset all variables used in the block
▶ //synopsys sync_set_reset “reset”

(University of Michigan) Lab 1: Verilog January 11, 2024 36 / 60

Verilog Flow Control

Flow Control

All Flow Control
▶ Can only be used inside procedural blocks (always, initial, task,

function)
▶ Encapsulate multiline assignments with begin...end
▶ Remember to assign on all paths

Synthesizable Flow Control
▶ if/else
▶ case

(University of Michigan) Lab 1: Verilog January 11, 2024 37 / 60

Verilog Flow Control

Flow Control

Unsythesizable Flow Control
▶ Useful in testbenches
▶ For example. . .

▶ for
▶ while
▶ repeat
▶ forever

(University of Michigan) Lab 1: Verilog January 11, 2024 38 / 60

Verilog Flow Control

Flow Control by Example

Synthesizable Flow Control Example

always_comb
begin

if (muxy == 1'b0)
y = a;

else
y = b;

end

The Ternary Alternative

wire y;
assign y = muxy ? b : a;

(University of Michigan) Lab 1: Verilog January 11, 2024 39 / 60

Verilog Flow Control

Flow Control by Example

Casez Example

always_comb
begin

casez(alu_op)
3'b000: r = a + b;
3'b001: r = a - b;
3'b010: r = a * b;
...
3'b1??: r = a ^ b;

endcase
end

(University of Michigan) Lab 1: Verilog January 11, 2024 40 / 60

Testing

Testing

What is a test bench?
▶ Provides inputs to one or more modules
▶ Checks that corresponding output makes sense
▶ Basic building block of Verilog testing

Why do I care?
▶ Finding bugs in a single module is hard. . .
▶ But not as hard as finding bugs after combining many modules
▶ Better test benches tend to result in higher project scores

(University of Michigan) Lab 1: Verilog January 11, 2024 41 / 60

Testing

Intro to Test Benches

Features of the Test Bench
▶ Unsynthesized

▶ Remember unsynthesizable constructs? This is where they’re used.
▶ In particular, unsynthesizable flow control is useful in testbenches (e.g.

for, while)
▶ Programmatic

▶ Many programmatic, rather than hardware design, features are available
e.g. functions, tasks, classes (in SystemVerilog)

(University of Michigan) Lab 1: Verilog January 11, 2024 42 / 60

Testing

Anatomy of a Test Bench

A good test bench should, in order. . .
1. Declare inputs and outputs for the module(s) being tested
2. Instantiate the module (possibly under the name DUT for Device Under

Test)
3. Setup a clock driver (if necessary)
4. Setup a correctness checking function (if necessary/possible)
5. Inside an initial block. . .

5.1 Assign default values to all inputs, including asserting any available
reset signal

5.2 $monitor or $display important signals
5.3 Describe changes in input, using good testing practice

(University of Michigan) Lab 1: Verilog January 11, 2024 43 / 60

Testing

Unsythesizable Procedural Blocks

initial Blocks
▶ Procedural blocks, just like always
▶ Contents are simulated once at the beginning of a simulation
▶ Used to set values inside a test bench
▶ Should only be used in test benches

(University of Michigan) Lab 1: Verilog January 11, 2024 44 / 60

Testing

Unsythesizable Procedural Blocks

initial Block Example

initial
begin

@(negedge clock);
reset = 1'b1;
in0 = 1'b0;
in1 = 1'b1;
@(negedge clock);
reset = 1'b0;
@(negedge clock);
in0 = 1'b1;
...

end

(University of Michigan) Lab 1: Verilog January 11, 2024 45 / 60

Testing

Tasks and Functions

task
▶ Reuse commonly repeated

code
▶ Can have delays (e.g. #5)
▶ Can have timing information

(e.g. @(negedge clock))
▶ Might be synthesizable

(difficult, not recommended)

function
▶ Reuse commonly repeated

code
▶ No delays, no timing
▶ Can return values, unlike a

task
▶ Basically combinational logic
▶ Might be synthesizable

(difficult, not recommended)

(University of Michigan) Lab 1: Verilog January 11, 2024 46 / 60

Testing

Tasks and Functions by Example

task Example
task exit_on_error;

input [63:0] A, B, SUM;
input C_IN, C_OUT;
begin

$display("@@@ Incorrect at time %4.0f", $time);
$display("@@@ Time:%4.0f clock:%b A:%h B:%h CIN:%b SUM:%h"

"COUT:%b", $time, clock, A, B, C_IN, SUM, C_OUT);
$display("@@@ expected sum=%b", (A+B+C_IN));
$finish;

end
endtask

(University of Michigan) Lab 1: Verilog January 11, 2024 47 / 60

Testing

Tasks and Functions by Example

function Example
function check_addition;

input wire [31:0] a, b;
begin

check_addition = a + b;
end

endfunction

assign c = check_addition(a,b);

(University of Michigan) Lab 1: Verilog January 11, 2024 48 / 60

Testing

Intro to System Tasks and Functions

▶ Just like regular tasks and functions
▶ But they introspect the simulation
▶ Mostly these are used to print information
▶ Behave just like printf from C

(University of Michigan) Lab 1: Verilog January 11, 2024 49 / 60

Testing

List of System Tasks and Functions

$monitor Used in test benches. Prints every time an argument
changes. Very bad for large projects.
e.g. $monitor("format",signal,...)

$display Can be used in either test benches or design, but not after
synthesis. Prints once. Not the best debugging technique
for significant projects.
e.g. $display("format",signal,...)

$strobe Like display, but prints at the end of the current simulation
time unit.
e.g. $strobe("format",signal,...)

$time The current simulation time as a 64 bit integer.
$reset Resets the simulation to the beginning.

$finish Exit the simulator, return to terminal.
More available at ASIC World.

(University of Michigan) Lab 1: Verilog January 11, 2024 50 / 60

http://www.asic-world.com/verilog/sys_task_func1.html

Testing

Test Benches by Example

Test Bench Setup

module testbench;
logic clock, reset, taken, transition, prediction;

two_bit_predictor(
.clock(clock),
.reset(reset),
.taken(taken),
.transition(transition),
.prediction(prediction)

);

always begin
#(`CLOCK_PERIOD/2.0);
clock = ~clock;

end

(University of Michigan) Lab 1: Verilog January 11, 2024 51 / 60

Testing

Test Benches by Example

Test Bench Test Cases
initial
begin

$monitor("Time:%4.0f clock:%b reset:%b taken:%b trans:%b"
"pred:%b", $time, clock, reset, taken,
transition, prediction);

clock = 1'b1;
reset = 1'b1;
taken = 1'b1;
transition = 1'b1;
@(negedge clock);
@(negedge clock);
reset = 1'b0;
@(negedge clock);
taken = 1'b1;
...
$finish;

end

(University of Michigan) Lab 1: Verilog January 11, 2024 52 / 60

Testing

Test Bench Tips

Remember to. . .
▶ Initialize all module inputs
▶ Then assert reset
▶ Use @(negedge clock) when changing inputs to avoid race

conditions

(University of Michigan) Lab 1: Verilog January 11, 2024 53 / 60

Project 1

Project 1 Administrivia

Grading
▶ Objective Grading

▶ 70 points possible
▶ Test cases automatically run

▶ Subjective Grading
▶ 30 points possible
▶ Verilog style graded by hand
▶ Some Verilog Style Guidelines (click for link)
▶ In general, the goal is to make your code easy to read

(University of Michigan) Lab 1: Verilog January 11, 2024 54 / 60

https://www.eecs.umich.edu/courses/eecs470/projects/guidelines.pdf

Project 1

Project 1 Administrivia

Submission Script
▶ You will submit projects to the EECS 470 autograder by uploading

your solution files to the main branch of your GitHub repository and
running the project submission script on CAEN:

▶ /afs/umich.edu/class/eecs470/Public/470submit
project_num

(University of Michigan) Lab 1: Verilog January 11, 2024 55 / 60

Project 1

Project 1 Hints

Hierarchical Design
▶ Used to expand modules

▶ Build a 64-bit adder out of 1-bit adders
▶ Build a 4-bit and out of 2-bit ands

▶ No additional logic is needed!
▶ Project 1 Part C and D

▶ Build a 4-bit priority selector out of only 2-bit priority selectors!
▶ Build a 4-bit rotating priority selector out of only 2-bit rotating priority

selectors and a simple counter!

(University of Michigan) Lab 1: Verilog January 11, 2024 56 / 60

Project 1

Project 1 Hints

(University of Michigan) Lab 1: Verilog January 11, 2024 57 / 60

Project 1

Project 1 Hints

and2

and2and2

x
tmp[0]

a[0]

x
tmp[1]

a[1]

a[1]

in[3]

a[0]

in[2]

a[1]

in[1]

a[0]

in[0]

x

out

and4

(University of Michigan) Lab 1: Verilog January 11, 2024 58 / 60

Lab Assignment

Lab Assignment

▶ Follow the tutorial, this is one of the most important documents in
this class. . .

▶ Assignment on the course website.
▶ Submission: Place yourself on the help queue and we will check you

off when you feel comfortable you can demonstrate what is required

(University of Michigan) Lab 1: Verilog January 11, 2024 59 / 60

http://www.eecs.umich.edu/eecs/courses/eecs470
https://oh.eecs.umich.edu/courses/eecs470

Lab Assignment

Useful Links

▶ Consider using VS Code with Remote SSH via Scott Smith’s helpful
guide

▶ Get comfortable using CAEN VNC if you can
▶ Review the GTKwave Waveform Viewer tutorial should VNC be too

delayed
▶ Read the Screen tutorial before synthesizing your projects.
▶ Assignment on the course website.
▶ Submission: Place yourself on the help queue and we will check you

off.

(University of Michigan) Lab 1: Verilog January 11, 2024 60 / 60

https://docs.google.com/document/d/1xtkhDykp9vtkyjXg_1e1PFLRxDDjNmuUWUHt-wfaDjU/edit?usp=sharing
https://caenfaq.engin.umich.edu/linux-login/how-do-i-connect-to-a-caen-linux-computer-remotely
https://docs.google.com/document/d/1U9FOOYAPqvhSQda-v66SCmUgdvuaBs1KIK8Ht4_WSCA/edit?usp=sharing
https://docs.google.com/document/d/1mnxgtQkvPcpKlBzCL9bKiwrFYpbx-hsqfRTPK-weB7Q/edit?usp=sharing
http://www.eecs.umich.edu/eecs/courses/eecs470
https://oh.eecs.umich.edu/courses/eecs470

	EECS 470
	Verilog
	Verilog Flow Control
	Testing
	Project 1
	Lab Assignment

