EECS 470 Lab 1

Verilog: Hardware Description Language

Department of Electrical Engineering and Computer Science
College of Engineering
University of Michigan

January 11, 2024

(University of Michigan) Lab 1: Verilog January 11, 2024 1/60

Overview

EECS 470

Verilog

Verilog Flow Control
Testing

Project 1

Lab Assignment

(University of Michigan) Lab 1: Verilog January 11, 2024 2 /60

Help?

» Contact Information

> EECS 470 Staff Email - eecs470staff@umich.edu
» Emails sent to the above address will go to all instructors so we can
respond to your questions faster.
> EECS 470 Piazza (click for link)
» Most of your project related questions should be asked here so that
other people can benefit from the answer.
» Reminder: Please do not post program code in public questions.

» See up-to-date office hours on the course website.

(University of Michigan) Lab 1: Verilog January 11, 2024

3/60

mailto:@umich.edu
https://piazza.com/class/lr9fclnckiy7pe
http://www.eecs.umich.edu/eecs/courses/eecs470

Where? When?

» Due to the completely online nature
» Labs will be released shortly before the start of the first lab each week.
> A recording of the lab will be released at the end of each week.
> Please refer to the slides and recording for demonstrations and tips!

» Lab attendance is optional but strongly recommended!
> Two Lab Sections
» 011 - Friday 10:30 am to 12:30 pm (BBB 1620)
» 012 — Friday 4:30 pm to 6:30 pm (GGBL 2517)
» 013 - Friday 2:30 pm to 4:30 pm (GGBL 2517)

> You can attend any of the lab sections. If the lab becomes very busy,
please try to attend your own lab section hours (within reason).

P Labs assignments must be checked off during a live meeting with an
instructor. If you are unable to get checked off during lab, you can also
get checked off during any office hours.

> Labs are due by the end of lab the week after they are assigned.

(University of Michigan) Lab 1: Verilog January 11, 2024 4 /60

What?

Lab 1 — Verilog: Hardware Description Language
Lab 2 — The Build System

Lab 3 — Writing Good Testbenches

Lab 4 — Revision Control

Lab 5 — Scripting

Lab 6 — SystemVerilog

(University of Michigan) Lab 1: Verilog January 11, 2024 5/60

EECS 470

Projects

Individual Verilog Projects
Project 1 — Priority Selectors (1%)

Project 2 — Pipelined Multiplier, Integer Square Root (2%)
Project 3 — Verisimple 5-stage Pipeline (5%)

Group Project
Project 4 — Out-of-Order Processor (35%)

(University of Michigan) Lab 1: Verilog January 11, 2024 6 /60

Advice

» These projects will take a non-trivial amount of time, especially if

you're not a Verilog guru.

» You should start them early. Seriously. ..

» Especially Project 3!

(University of Michigan) Lab 1: Verilog

January 11, 2024

7/60

Project 4

> RISCV-V ISA

» An open source ISA that has commercial products
> Better software support, education friendly and has various extensions
that include additional functionality

» Groups of 5 to 6

» Start thinking about your groups now
» You'll be spending hundreds of hours together this semester, so work
with people with whom you get along.
» Heavy Workload
> 100 hours/member, minimum
> 150 to 300 hours/member, more realistically
» This is a lower bound, not an upper bound. ..

» Class is heavily loaded to the end of the term

(University of Michigan) Lab 1: Verilog January 11, 2024 8 /60

EECS 470

Administrivia

» Homework 1 is due Thursday, 18thth January, 2024 11:59 PM (turn in
via Gradescope)

» Project 1 is due Tuesday 23rdt" January, 2024 11:59 PM (turn in via
submission script)

> Lab 1 is due Friday, 19th™" January, 2024 11:59 PM (turn in via
gradescope)

(University of Michigan) Lab 1: Verilog January 11, 2024 9 /60

Intro to Verilog

What is Verilog?

» Hardware Description Language - IEEE 1364-2005
» Superseded by SystemVerilog - IEEE 1800-2009
> Two Forms

1. Behavioral
2. Structural

» |t can be built into hardware. If you can’t think of at least one
(inefficient) way to build it, it might not be good.

Why do | care?

» We use Behavioral Verilog to do computer architecture here.

» Semiconductor Industry Standard (VHDL is also common, more so in
Europe)

(University of Michigan) Lab 1: Verilog January 11, 2024 10 / 60

The Difference Between Behavioral and Structural Verilog

Behavioral Verilog Structural Verilog
» Describes function of design » Describes construction of
» Abstractions design
> Arithmetic operations » No abstraction
+ - .
(. *5/) : » Uses modules, corresponding
» Logical operations))
@ 1,",7) to physical devices, for

everything

Suppose we want to build an adder?

(University of Michigan) Lab 1: Verilog January 11, 2024 11 /60

Verilog

Structural Verilog by Example

ino
cln /

Figure: 1-bit Full Adder

(University of Michigan) Lab 1: Verilog January 11, 2024 12 /60

Structural Verilog by Example

module one_bit_adder(
input wire a,b,cin,
output wire sum,cout);
wire w_O,w_1,w_2;
xor u0(w_0,a,b);
xor ul(sum,w_0,cin);
and u2(w_1,w_0,cin);
and u3(w_2,a,b);
or u4(cout,w_1,w_2);
endmodule

(University of Michigan) Lab 1: Verilog January 11, 2024 13 /60

Behavioral Verilog by Example

module one_bit_adder(

input wire a,b,cin,

output wire sum,cout);

assign sum = a = b ~ cin;

assign cout = ((a =~ b) & cin) | a & b;
endmodule

(University of Michigan) Lab 1: Verilog January 11, 2024

14 /60

Behavioral Verilog by Example

module one_bit_adder(
input logic a,b,cin,
output logic sum,cout);

always_comb

begin
sum = a - b ~ cin;
cout = 1'b0;
if ((a =~ b) & cin) | (a & b))
cout = 1'bl;
end
endmodule

(University of Michigan) Lab 1: Verilog January 11, 2024 15 / 60

Verilog Semantics

Lexical
» Everything is case sensitive.
» Type instances must start with A-Z,a-z,_. They may contain
A-Z,a-z,0-9,_,$.
» Comments begin with // or are enclosed with /* and */.

(University of Michigan) Lab 1: Verilog January 11, 2024

16 / 60

Data Types

Synthesizable Data Types

wires Also called nets

wire a_wire;
wire [3:0] another_4bit_wire;

» Cannot hold state

logic Replaced reg in SystemVerilog

logic [7:0] an_8bit_register;
reg a_register;

» Holds state, might turn into flip-flops
» Less confusing than using reg with combinational logic
(coming up...)

(University of Michigan) Lab 1: Verilog January 11, 2024 17 / 60

Data Types

Unsynthesizable Data Types

integer Signed 32-bit variable
time Unsigned 64-bit variable

real Double-precision floating point variable

(University of Michigan) Lab 1: Verilog January 11, 2024

18 /60

Types of Values

Four State Logic

0 False, low
1 True, high
Z High-impedance, unconnected net

X Unknown, invalid, don't care

(University of Michigan) Lab 1: Verilog January 11, 2024 19 / 60

Values

Literals/Constants

» Written in the format <bitwidth>’<base><constant>
» Options for <base> are. ..

b Binary

o Octal

d Decimal

h Hexadecimal

assign an_8bit_register = 8'b10101111;
assign a_32bit_wire = 32'hABCD_EFO01;
assign a_4bit_logic = 4'hE;

(University of Michigan) Lab 1: Verilog January 11, 2024 20 /60

Verilog Operators

Arithmetic
Multiplication
Division
Addition
Subtraction
Modulus
Exponentiation

Bitwise
Complement
And
Or
Nor
Xor
Xnor

Logical
Complement
And
Or

(University of Michigan)

>>
<<
>>>
<L

Lab 1: Verilog

Shift
Logical right shift
Logical left shift
Arithmetic right shift
Arithmetic left shift
Relational
Greater than
Greater than or equal to
Less than
Less than or equal to
Inequality
4-state inequality
Equality
4-state equality
Special
Concatenation
Replication
Ternary

January 11, 2024

21/60

Setting Values

assign Statements

» One line descriptions of combinational logic

> Left hand side must be a wire (SystemVerilog allows assign statements
on logic type)

» Right hand side can be any one line verilog expression
» Including (possibly nested) ternary (7:)

Example

module one_bit_adder(

input wire a,b,cin,

output wire sum,cout);

assign sum = a ~ b ~ cin;

assign cout = ((a =~ b) & cin) | a & b;
endmodule

(University of Michigan) Lab 1: Verilog January 11, 2024 22 /60

Setting Values

always Blocks

» Contents of always blocks are executed whenever anything in the
sensitivity list happens
> Two main types in this class. ..
> always_comb

» implied sensitivity lists of every signal inside the block
» Used for combinational logic. Replaced always @*
> always_ff @(posedge clk)
> sensitivity list containing only the positive transition of the clk signal
> Used for sequential logic

» All left hand side signals need to be logic type.

(University of Michigan) Lab 1: Verilog January 11, 2024 23 /60

Always Block Examples

Combinational Block

always_comb
begin

X = a + b;

y = x + 8'h5;
end

Sequential Block

always_ff @(posedge clk)
begin

x <= next_x;

y <= next_y;
end

(University of Michigan) Lab 1: Verilog January 11, 2024 24 /60

Blocking vs. Nonblocking Assignments

Blocking Assignment Nonblocking Assignment
» Combinational Blocks » Sequential Blocks
» Each assignment is » Uses the <= operator
processed in order, earlier VS, > All assignments occur
assignments block later ones “simultaneously”
» Uses the = operator > Requiring delays on

non-blocking assignments
(using ‘1) is a common
myth, and should only
be done if you want a
30% simulation
performance hit or if
you use mixed RTL and
gate-level

(University of Michigan) Lab 1: Verilog ’ January 11, 2024 25 /60

http://sunburst-design.com/papers/CummingsSNUG2002Boston_NBAwithDelays.pdf
http://sunburst-design.com/papers/CummingsSNUG2002Boston_NBAwithDelays.pdf
http://sunburst-design.com/papers/CummingsSNUG2002Boston_NBAwithDelays.pdf
http://sunburst-design.com/papers/CummingsSNUG2002Boston_NBAwithDelays.pdf

Blocking vs. Nonblocking Assignment by Example

Blocking Example

always_comb
begin

X = new_vall;
y = new_val2;
sum = X + y;

end
» Behave exactly as expected new vali UL
» Standard combinational logic x s

new_val2 _ [L_JL_
y T
sum _[| L[L[]

Figure: Timing diagram for the
above example.

(University of Michigan) Lab 1: Verilog January 11, 2024 26 /60

Blocking vs. Nonblocking Assignment by Example

Nonblocking Example
always_ff @(posedge clock)
begin
X <= new_vall;
y <= new_val2;
sum <= X + y;

end
» What changes between clock _[LI LI
?
these two examples? new_vall __ [T L [T L TL [T]
» Nonblocking means that x [T rur

sum lags a cycle behind
the other two signals

new_val2 _| | | L
sum —1 ‘ \ ‘

Figure: Timing diagram for the above example.

(University of Michigan) Lab 1: Verilog January 11, 2024 27 /60

Blocking vs. Nonblocking Assignment by Example

Bad Example
always_ff @(posedge clock)
begin
X <=y,
z = X,
end
» z is updated after x clock _[LITLILILT
» z updates on negedge reset | | L
clock x —— [T

Figure: Timing diagram for the
above example.

(University of Michigan) Lab 1: Verilog January 11, 2024 28 /60

Synthesis Tips

Latches
» What is a latch?
> Memory device without a clock

> Generated by a synthesis tool when a net needs to hold state without
being clocked (combinational logic)

» Generally bad, unless designed in intentionally

» Unnecessary in this class

(University of Michigan) Lab 1: Verilog January 11, 2024 29 /60

Synthesis Tips

Latches
> Always assign every variable on every path
» This code generates a latch
» Why does this happen?

always_comb
begin
if (cond)
next_x = y;
end

(University of Michigan) Lab 1: Verilog January 11, 2024

30/ 60

Synthesis Tips

Possible Solutions to Latches
always_comb
begin
next_x = x;
if (cond)
next_x = y;

end

always_comb

begin
if (cond)
next_x = y;
else
next_x = x;
end

(University of Michigan) Lab 1: Verilog January 11, 2024 31/60

Modules

Intro to Modules
» Basic organizational unit in Verilog

» Can be reused

Module Example

module my_simple_mux(
input wire select_in, a_in, b_in; //inputs listed
output wire muxed_out); //outputs listed
assign muxed_out = select_in 7 b_in : a_in;
endmodule

(University of Michigan) Lab 1: Verilog January 11, 2024

32/60

Modules

Writing Modules

» Inputs and outputs must be listed, including size and type
format: <dir> <type> <[WIDTH-1:0]> <name>;
e.g. output logic [31:0] addr;

» In module declaration line or after it, inside the module

Instantiating Modules

» Two methods of instantiation

1. e.g. my_simple_mux mi(.a_in(a),.b_in(b),
.select_in(s), .muxed_out (m)) ;

2. e.g. my_simple_mux ml(a,b,s,m);
» The former is much safer. ..
» Introspection (in testbenches): module.submodule.signal

(University of Michigan) Lab 1: Verilog January 11, 2024 33 /60

How to Design with Verilog

» Remember — Behavioral Verilog implies no specific hardware design
» But, it has to be synthesizable
» Better be able to build it somehow

(University of Michigan) Lab 1: Verilog January 11, 2024

34 /60

Keys to Synthesizability

Combinational Logic

> Avoid feedback (combinatorial loops)
» Always blocks should

» Be always_comb blocks
» Use the blocking assignment operator =

> All variables assigned on all paths

» Default values
> if(...) paired with an else

(University of Michigan) Lab 1: Verilog January 11, 2024

35 /60

Keys to Synthesizability

Sequential Logic

> Avoid clock- and reset-gating
» Always blocks should

> Be always_ff @(posedge clock) blocks
P> Use the nonblocking assignment operator: <=

» No path should set a variable more than once
> Reset all variables used in the block

> //synopsys sync_set_reset ‘‘reset’’

(University of Michigan) Lab 1: Verilog January 11, 2024

36/ 60

Verilog Flow Control

Flow Control

All Flow Control

» Can only be used inside procedural blocks (always, initial, task,
function)

» Encapsulate multiline assignments with begin. . .end
» Remember to assign on all paths

Synthesizable Flow Control
> if/else

» case

(University of Michigan) Lab 1: Verilog January 11, 2024 37 /60

Verilog Flow Control

Flow Control

Unsythesizable Flow Control

» Useful in testbenches
> For example. ..

» for

» while

» repeat

» forever

(University of Michigan) Lab 1: Verilog January 11, 2024 38 /60

Flow Control by Example

Synthesizable Flow Control Example

always_comb

begin
if (muxy == 1'bO0)
y = a
else
y = b;
end

The Ternary Alternative

wire y;
assign y = muxy 7 b : a;

(University of Michigan) Lab 1: Verilog January 11, 2024

39/60

Verilog Flow Control

Flow Control by Example

Casez Example

always_comb

begin
casez(alu_op)
3'b000: r a + b;
3'b001: r a - b;
3'b010: r a * b;
3'b177: r a ~ b;
endcase
end
Lab 1: Verilog January 11, 2024 40 / 60

Testing

What is a test bench?
» Provides inputs to one or more modules
» Checks that corresponding output makes sense

» Basic building block of Verilog testing

Why do | care?

» Finding bugs in a single module is hard. ..
» But not as hard as finding bugs after combining many modules

> Better test benches tend to result in higher project scores

(University of Michigan) Lab 1: Verilog January 11, 2024

41/60

Intro to Test Benches

Features of the Test Bench
» Unsynthesized

P> Remember unsynthesizable constructs? This is where they're used.
» In particular, unsynthesizable flow control is useful in testbenches (e.g.
for, while)

» Programmatic

> Many programmatic, rather than hardware design, features are available
e.g. functions, tasks, classes (in SystemVerilog)

(University of Michigan) Lab 1: Verilog January 11, 2024 42 /60

Anatomy of a Test Bench

A good test bench should, in order. ..
1. Declare inputs and outputs for the module(s) being tested
2. Instantiate the module (possibly under the name DUT for Device Under
Test)
3. Setup a clock driver (if necessary)
4. Setup a correctness checking function (if necessary/possible)

5. Inside an initial block...
5.1 Assign default values to all inputs, including asserting any available
reset signal
5.2 $monitor or $display important signals
5.3 Describe changes in input, using good testing practice

(University of Michigan) Lab 1: Verilog January 11, 2024 43 /60

Unsythesizable Procedural Blocks

initial Blocks
» Procedural blocks, just like always
» Contents are simulated once at the beginning of a simulation
» Used to set values inside a test bench

» Should only be used in test benches

(University of Michigan) Lab 1: Verilog January 11, 2024 44 /60

Unsythesizable Procedural Blocks

initial Block Example

initial

begin
Q@(negedge clock);
reset = 1'bl;
in0 = 1'bO;
inl = 1'bl;
@(negedge clock);
reset = 1'b0;
Q@(negedge clock);
in0 = 1'bl;

end

(University of Michigan) Lab 1: Verilog January 11, 2024 45 / 60

Tasks and Functions

task function

» Reuse commonly repeated » Reuse commonly repeated
code code

» Can have delays (e.g. #5) » No delays, no timing

» Can have timing information » Can return values, unlike a
(e.g. @(negedge clock)) task

» Might be synthesizable » Basically combinational logic
(difficult, not recommended) > Might be synthesizable

(difficult, not recommended)

(University of Michigan) Lab 1: Verilog January 11, 2024 46 / 60

Tasks and Functions by Example

task Example

task exit_on_error;
input [63:0] A, B, SUM;
input C_IN, C_OUT;
begin
$display("@@@ Incorrect at time %4.0f", $time);
$display("@Q@Q@ Time:%4.0f clock:%b A:%h B:%h CIN:%b SUM:%h"
"COUT:%b", $time, clock, A, B, C_IN, SUM, C_OUT);
$display("@Q@ expected sum=%b", (A+B+C_IN));
$finish;
end
endtask

(University of Michigan) Lab 1: Verilog January 11, 2024 47 / 60

Tasks and Functions by Example

function Example

function check_addition;
input wire [31:0] a, b;
begin
check_addition = a + b;
end
endfunction

assign ¢ = check_addition(a,b);

(University of Michigan) Lab 1: Verilog January 11, 2024

48 /60

Intro to System Tasks and Functions

> Just like regular tasks and functions

» But they introspect the simulation

» Mostly these are used to print information
» Behave just like printf from C

(University of Michigan) Lab 1: Verilog January 11, 2024 49 / 60

List of System Tasks and Functions

$monitor Used in test benches. Prints every time an argument
changes. Very bad for large projects.
e.g. $monitor("format",signal,...)

$display Can be used in either test benches or design, but not after
synthesis. Prints once. Not the best debugging technique
for significant projects.
e.g. $display("format",signal,...)

$strobe Like display, but prints at the end of the current simulation
time unit.
e.g. $strobe("format",signal,...)

$time The current simulation time as a 64 bit integer.
$reset Resets the simulation to the beginning.
$finish Exit the simulator, return to terminal.
More available at ASIC World.
Lab 1: Verilog January 11, 2024 50/ 60

http://www.asic-world.com/verilog/sys_task_func1.html

Test Benches by Example

Test Bench Setup

module testbench;
logic clock, reset, taken, transition, prediction;

two_bit_predictor(
.clock(clock),
.reset (reset),
.taken(taken),
.transition(transition),
.prediction(prediction)

)

always begin
(" CLOCK_PERIOD/2.0);
clock = “clock;

end

(University of Michigan) Lab 1: Verilog January 11, 2024 51 /60

Test Benches by Example

Test Bench Test Cases

initial
begin

$monitor("Time:%4.0f clock:%b reset:%b taken:%b trans:%b"
"pred:%b", $time, clock, reset, taken,

transition, prediction);

clock = 1'bl;
reset = 1'bl;
taken = 1'bl;
transition = 1'bl;
@(negedge clock);
Q@(negedge clock);
reset = 1'b0;
@(negedge clock);
taken = 1'bl;

$finish;
end

(University of Michigan) Lab 1: Verilog

January 11, 2024

52 /60

Test Bench Tips

Remember to. . .
» Initialize all module inputs
» Then assert reset
P> Use @(negedge clock) when changing inputs to avoid race
conditions

(University of Michigan) Lab 1: Verilog January 11, 2024 53 /60

Project 1 Administrivia

Grading

» Objective Grading

» 70 points possible

P Test cases automatically run
» Subjective Grading

» 30 points possible

» Verilog style graded by hand

» Some Verilog Style Guidelines (click for link)

» In general, the goal is to make your code easy to read

(University of Michigan) Lab 1: Verilog January 11, 2024

54 /60

https://www.eecs.umich.edu/courses/eecs470/projects/guidelines.pdf

Project 1 Administrivia

Submission Script

» You will submit projects to the EECS 470 autograder by uploading
your solution files to the main branch of your GitHub repository and
running the project submission script on CAEN:

» /afs/umich.edu/class/eecs470/Public/470submit
project_num

(University of Michigan) Lab 1: Verilog January 11, 2024 55 /60

Project 1 Hints

Hierarchical Design

» Used to expand modules
» Build a 64-bit adder out of 1-bit adders
» Build a 4-bit and out of 2-bit ands

» No additional logic is needed!

» Project 1 Part C and D

» Build a 4-bit priority selector out of only 2-bit priority selectors!
» Build a 4-bit rotating priority selector out of only 2-bit rotating priority
selectors and a simple counter!

(University of Michigan) Lab 1: Verilog January 11, 2024 56 / 60

Project 1 Hints

(University of Michigan) Lab 1: Verilog January 11, 2024 57 /60

Project 1 Hints

out

X

and?2

al[1] al[o0]

tmp[1] tmpl[O]

al1] a[0]

in[3] in[2] in[1] in[0]

(University of Michigan) Lab 1: Verilog January 11, 2024 58 /60

Lab Assignment

Lab Assignment

» Follow the tutorial, this is one of the most important documents in
this class. . .
» Assignment on the course website.

» Submission: Place yourself on the help queue and we will check you
off when you feel comfortable you can demonstrate what is required

(University of Michigan) Lab 1: Verilog January 11, 2024 59 /60

http://www.eecs.umich.edu/eecs/courses/eecs470
https://oh.eecs.umich.edu/courses/eecs470

Useful Links

» Consider using VS Code with Remote SSH via Scott Smith's helpful
guide
» Get comfortable using CAEN VNC if you can

» Review the GTKwave Waveform Viewer tutorial should VNC be too
delayed

» Read the Screen tutorial before synthesizing your projects.

v

Assignment on the course website.

» Submission: Place yourself on the help queue and we will check you
off.

(University of Michigan) Lab 1: Verilog January 11, 2024 60 / 60

https://docs.google.com/document/d/1xtkhDykp9vtkyjXg_1e1PFLRxDDjNmuUWUHt-wfaDjU/edit?usp=sharing
https://caenfaq.engin.umich.edu/linux-login/how-do-i-connect-to-a-caen-linux-computer-remotely
https://docs.google.com/document/d/1U9FOOYAPqvhSQda-v66SCmUgdvuaBs1KIK8Ht4_WSCA/edit?usp=sharing
https://docs.google.com/document/d/1mnxgtQkvPcpKlBzCL9bKiwrFYpbx-hsqfRTPK-weB7Q/edit?usp=sharing
http://www.eecs.umich.edu/eecs/courses/eecs470
https://oh.eecs.umich.edu/courses/eecs470

	EECS 470
	Verilog
	Verilog Flow Control
	Testing
	Project 1
	Lab Assignment

