EECS 470 Final Exam

Winter 2008
Name: ____________________________________ unique name: _______________

Sign the honor code:

I have neither given nor received aid on this exam nor observed anyone else doing so.

Scores:

	Page #
	Points

	2
	/13

	3
	/15

	4
	/13

	5
	/8

	6
	/11

	7
	/12

	8
	/13

	9&10
	/15

	Total
	 /100

NOTES:

· Open White book and EABI only.

· There are 10 pages including this one.
· Calculators are allowed, but no PDAs, Portables, Cell phones, etc.

· Don’t spend too much time on any one problem.

· You have about 120 minutes for the exam.

· Be sure to show work and explain what you’ve done when asked to do so. Getting partial credit without showing work will be rare.
1) Short answer
a) Consider the following access pattern: A, B, C, D, A. Assume that A, B, C, and D are memory addresses each of which are in a different block of memory. Further, assume A, B, C and D are generated in a uniformly random way and that a "true" LRU replacement algorithm is used. What is the probability that the second instance of "A" will be a hit if:
i) Cache is a 4-line direct-mapped cache? [3]

ii) Cache is a 4-line two-way associative cache? [3]

b) Say on a given processor, physical addresses are 48 bits and virtual addresses are 64 bits. Further assume that virtual/physical pages are 8KB in size. A 32-entry 2-way associative TLB will need how many bits to store the tags used to determine if the TLB got a hit or not? (Just the tags, not other state bits.) Show your work. [4]

c) Say we wish to implement a Virtually-indexed Physically-tagged (VIPT) cache and that the size of the cache (in bytes) is S, the size of a virtual memory page is V, the size of a cache block is B, and degree of associativity of the cache is A. Which of the following would you expect to be true? (circle all that are correct) [3 points, -1 per wrong circle/lack-of-circle, min 0]

· S will be less than or equal to V/B

· S will be less than or equal to V*A

· B will be less than or equal to V

· S will be greater than or equal to A*B

· The VIPT cache will have a shorter THIT than a purely virtual cache.

2) Multiple choice/fill-in-the-blank. Pick the best answer.
[15 points, -2 per wrong/blank answer, min 0]

a) A battery is said to be able to output 5 Watts for 5 hours. This is a measure of
Energy / Current / Power .

b) A given processor uses an average of 10 Watts and averages 100 MIPS on a given application. A certain architectural change is found to drop that to 5 Watts at 75 MIPS. That change drops the power utilization to about 25/50/66/75/90 percent of what it was, and drops energy utilization to about 25/50/66/75/90 percent of what it was.

c) In general, a load can pass a store if that store has not resolved its address yet / has the same address as the load / has a different address than the load.

d) In general, stores can go to memory as early as issue /once its address and data are known / once it goes to the CDB / once it commits.

e) In general, loads can go to memory as early as issue /once its address and data are known / once it goes to the CDB / once it commits.

f) In a directory based system, a store request must go the home node unless the cache has it in the
S or E or I / S or E or M / E or M / M state.

g) A 10µm long wire that has a 40nm diameter will have a resistance that is greater than / lesser than / about equal to a wire made out of the same material that is 20µm long and has a 30nm diameter.

h) In IA-64, an advanced load can be used to hoist a load above a ________________. If that load causes a fault, the fault is deferred / handled immediately/ ignored.
3) Consider the following C-code segment:

char A[8192];

// each element is 1 byte

for(j=0;j<100000;j++)

for(i=0;i<Y;i=i+X)

A[i]=A[i]+1;

Assume that only accesses to the array A go to the data cache (the other values are in registers). For this code, what would be the expected hit-rate for the various values of X and Y if the data cache were 1 KB with 16-byte lines that was direct-mapped?
[7 points, -1 per wrong/blank box, min 0]
	
	X=2
	X=4
	X=32

	Y=128

	
	
	

	Y=2048

	
	
	

	Y=1536*

	
	
	

*Note: 1536=1024+512
Now do the same as above, but this time the cache is fully associative (it is the same size and has the same size lines). [6 points, -2 per wrong/blank box, min 0]

	
	X=8
	X=64

	Y=2048

	
	

	Y=8192

	
	

4) In one or two sentences explain why we don’t use the most significant bits of an address for the index bits of a cache. [4]

5) Provide the shortest possible reference stream where a direct-mapped cache will get a hit, while a 2-way associative cache will get a miss. Assume both are 4KB caches with 16-byte lines and give your answer in hex. [4]
6) The general formula for active power consumption is
 Power ~ ½ CV2Af

In class we claimed that voltage scaling can be expected to affect power consumption by a factor of V3 but only affect performance by a factor of V. Explain how the above formula supports those claims. Be clear and keep your answer to no more than 100 words (the best answers will be significantly shorter than that). [8]
7) Define the term “register pressure” and list one thing IA-64 does to reduce the problem. [3]
8) Consider the following pseudo-assembly program segment:
 R6=0

 R5=R1+1000

A: R3=MEM[R1]

 R4=MEM[R1+4]

 R2=R3*R4

 R6=R2+R6
 R1=R1+8

 IF(R1!=R5) goto A

B:
a. If every load returns a 1, what will be the value in R6 when this program segment gets to label “B”? [2]
b. Say we have a computer that fetches and starts execution in order and stalls on an instruction if and only if that instruction is data-dependent on an instruction that came before it that hasn’t yet completed. On this machine, loads and multiplies take 3 cycles to execute (in other words, if the instruction that followed them were dependent, it would stall for 2 cycles).

You are to rewrite the above code so that it accomplishes the same task but uses loop unrolling and instruction reordering to insure that the program doesn’t stall (or otherwise do useless things like noops). You may assume that the code as written does not fault. [10]
9) Consider a case of having 3 processors using a snoopy MESI protocol where the memories can snarf data. All three have a 2 line direct-mapped cache with each line consisting of 16 bytes. The caches begin with all lines marked as invalid. Fill in the following tables indicating

· If the processor gets a hit or a miss in its cache

· If a HIT or HITM (or nothing) occurs on the bus during snoop.

· What bus transaction(s) (if any) the processor performs (BRL, BWL, BRIL, BIL)

· For misses only, indicate if the miss is compulsory, capacity, conflict, or coherence. A coherence miss is one where there would have been a hit, had some other processor not caused an invalidation of that line.

In the event more than one bus transaction occurs due to a given memory read/write indicate the response for each bus transaction. Finally, indicate the state of the processor after all of these memory operations have completed. The operations occur in the order shown. [13 points, -0.5 per wrong or blank, minimum of 0]

	Processor
	Address
	Read/Write
	Bus transaction(s)
	Hit/Miss
	HIT/
HITM
	“4C” miss type (if any)

	1
	0x110
	Write
	
	
	
	

	1
	0x200
	Write
	
	
	
	

	1
	0x210
	Read
	
	
	
	

	1
	0x110
	Read
	
	
	
	

	2
	0x200
	Read
	
	
	
	

	2
	0x110
	Write
	
	
	
	

	2
	0x200
	Write
	
	
	
	

	3
	0x300
	Read
	
	
	
	

	1
	0x110
	Write
	
	
	
	

	2
	0x110
	Read
	
	
	
	

Final state:

	
	Proc 1
	
	
	Proc 2
	
	
	Proc 3

	
	Address
	State
	
	
	Address
	State
	
	
	Address
	State

	Set 0
	
	
	
	Set 0
	
	
	
	Set 0
	
	

	Set 1
	
	
	
	Set 1
	
	
	
	Set 1
	
	

10) Consider the following state of a machine implementing what we’ve called Tomasulo’s third algorithm.

	RAT
	
	ROB
	
	RRAT

	Arch
Reg #
	Phy.

Reg #
	
	Buffer

Number
	PC
	Executed?
	Dest.

PRN
	Dest
ARN
	
	Arch
Reg #
	Phy.

Reg #

	0
	5
	
	0
	20
	Y
	0
	1
	(HEAD
	0
	5

	1
	7
	
	1
	24
	N
	6
	2
	
	1
	4

	2
	6
	
	2
	28
	Y
	--
	--
	
	2
	3

	3
	2
	
	3
	32
	N
	7
	1
	(TAIL
	3
	2

	4
	1
	
	4
	
	
	
	
	
	4
	1

	
	
	
	5
	
	
	
	
	
	
	

	
	
	
	6
	
	
	
	
	
	
	

	
	
	
	7
	
	
	
	
	
	
	

	
	
	
	8
	
	
	
	
	
	
	

	RS
	
	PRF

	RS#
	Op
Type
	Op1
Ready?
	Op1

PRN/value
	Op2
Ready?
	Op2
PRN/value
	Dest
PRN
	ROB
	
	Phy

Reg

	Value
	Free
	Valid

	0
	
	
	
	
	
	
	
	
	0
	11
	N
	Y

	1
	*
	Y
	0
	Y
	0
	6
	1
	
	1
	2
	N
	Y

	2
	+
	N
	6
	Y
	4
	7
	3
	
	2
	3
	N
	Y

	3
	
	
	
	
	
	
	
	
	3
	4
	N
	Y

	4
	
	
	
	
	
	
	
	
	4
	5
	N
	Y

	
	
	
	
	
	
	
	
	
	5
	6
	N
	Y

	
	
	
	
	
	
	
	
	
	6
	7
	N
	N

	
	
	
	
	
	
	
	
	
	7
	8
	N
	N

	
	
	
	
	
	
	
	
	
	8
	9
	Y
	N

	
	
	
	
	
	
	
	
	
	9
	0
	Y
	N

	
	
	
	
	
	
	
	
	
	10
	1
	Y
	N

	
	
	
	
	
	
	
	
	
	11
	2
	Y
	N

	
	
	
	
	
	
	
	
	
	12
	3
	Y
	N

Say that the instruction in ROB #2 is a branch and it was mis-predicted: the next PC should have been 100. . Now, say that the instruction in memory location 100 is R1=R2+R1, that in location 104 is R4=R1*R3, and 108 is R3=R1+R2. Update the machine to the state where the branch has left the RoB, and the instruction at location 100 has committed, the instruction at 104 has issued but not executed, and the instruction at 108 has gone as far as it can given the state of the other instructions. When faced with an arbitrary decision, just be sure to make a legal choice. Be sure to update the head and tail pointers! [15]

On the following page is an extra copy of this state. You may use this one or the one on the next page but be sure to cross out (with a BIG X) the one you don’t want graded.

Extra copy for your writing pleasure.

Consider the following state of a machine implementing what we’ve called Tomasulo’s third algorithm.

	RAT
	
	ROB
	
	RRAT

	Arch
Reg #
	Phy.

Reg #
	
	Buffer

Number
	PC
	Executed?
	Dest.

PRN
	Dest
ARN
	
	Arch
Reg #
	Phy.

Reg #

	0
	5
	
	0
	20
	Y
	0
	1
	(HEAD
	0
	5

	1
	7
	
	1
	24
	N
	6
	2
	
	1
	4

	2
	6
	
	2
	28
	Y
	--
	--
	
	2
	3

	3
	2
	
	3
	32
	N
	7
	1
	(TAIL
	3
	2

	4
	1
	
	4
	
	
	
	
	
	4
	1

	
	
	
	5
	
	
	
	
	
	
	

	
	
	
	6
	
	
	
	
	
	
	

	
	
	
	7
	
	
	
	
	
	
	

	
	
	
	8
	
	
	
	
	
	
	

	RS
	
	PRF

	RS#
	Op
Type
	Op1
Ready?
	Op1

PRN/value
	Op2
Ready?
	Op2
PRN/value
	Dest
PRN
	ROB
	
	Phy

Reg

	Value
	Free
	Valid

	0
	
	
	
	
	
	
	
	
	0
	11
	N
	Y

	1
	*
	Y
	0
	Y
	0
	6
	1
	
	1
	2
	N
	Y

	2
	+
	N
	6
	Y
	4
	7
	3
	
	2
	3
	N
	Y

	3
	
	
	
	
	
	
	
	
	3
	4
	N
	Y

	4
	
	
	
	
	
	
	
	
	4
	5
	N
	Y

	
	
	
	
	
	
	
	
	
	5
	6
	N
	Y

	
	
	
	
	
	
	
	
	
	6
	7
	N
	N

	
	
	
	
	
	
	
	
	
	7
	8
	N
	N

	
	
	
	
	
	
	
	
	
	8
	9
	Y
	N

	
	
	
	
	
	
	
	
	
	9
	0
	Y
	N

	
	
	
	
	
	
	
	
	
	10
	1
	Y
	N

	
	
	
	
	
	
	
	
	
	11
	2
	Y
	N

	
	
	
	
	
	
	
	
	
	12
	3
	Y
	N

Say that the instruction in ROB #2 is a branch and it was mis-predicted: the next PC should have been 100. . Now, say that the instruction in memory location 100 is R1=R2+R1, that in location 104 is R4=R1*R3, and 108 is R3=R1+R2. Update the machine to the state where the branch has left the RoB, and the instruction at location 100 has committed, the instruction at 104 has issued but not executed, and the instruction at 108 has gone as far as it can given the state of the other instructions. When faced with an arbitrary decision, just be sure to make a legal choice. Be sure to update the head and tail pointers!
You may use this one or the one on the previous page but be sure to cross out (with a BIG X) the one you don’t want graded.

KEY:

Op1 PRN/value is the value of the first argument if “Op1 ready?” is yes; otherwise it is the Physical Register Number that is being waited upon.

Op2 PRN/value is the same as above but for the second argument.

Dest. PRN is the destination Physical Register Number.

Dest. ARN is the destination Architectural Register Number.

ROB is the associated ROB entry for this instruction.

Free/Valid indicates if the PRF entry is currently available for allocation and if the valid in it is valid. A free entry should be marked as invalid.

KEY:

Op1 PRN/value is the value of the first argument if “Op1 ready?” is yes; otherwise it is the Physical Register Number that is being waited upon.

Op2 PRN/value is the same as above but for the second argument.

Dest. PRN is the destination Physical Register Number.

Dest. ARN is the destination Architectural Register Number.

ROB is the associated ROB entry for this instruction.

Free/Valid indicates if the PRF entry is currently available for allocation and if the valid in it is valid. A free entry should be marked as invalid.

Page 2 of 10

