
EECS 470 Winter 2024
HW1 solutions

1a)

Loop: LD R1, 0(R2)

 DADDI R1, R1, #1

 SD 0(R2), R1

 DADDI R2, R2, #4

 DSUB R4, R3, R2

 BNEZ R4, Loop

Inst. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

LD IF ID EX M WB

DADDI IF ID* ID* ID EX M WB

SD IF* IF* IF ID* ID* ID EX M WB

DADDI IF* IF* IF ID EX M WB

DSUB IF ID* ID* ID EX M WB

BNEZ IF* IF* IF ID* ID* ID EX M WB

X IF* IF* IF

LD IF ID EX

15 cycles

1b)

Inst. 1 2 3 4 5 6 7 8 9 10 11

LD IF ID EX MEM WB

DADDI IF ID* ID EX MEM WB
SD IF* IF ID EX MEM WB
DADDI IF ID EX MEM WB
DSUB IF ID EX MEM WB
BNEZ IF ID* ID EX MEM WB

X IF* IF ID EX MEM

LD IF ID EX

9 cycles

Note: we are stalling the BNEZ because it resolves in ID but needs data from the DSUB
which doesn’t exist until the end of DSUB being in EX.

1c)
Loop: LD R1, 0(R2)

 DADDI R2, R2, #4
 DSUB R4, R3, R2
 DADDI R1, R1, #1
 BNEZ R4, Loop
 SD -4(R2),R1

Inst. 1 2 3 4 5 6 7 8 9 10
LD IF ID EX MEM WB
DADDI IF ID EX MEM WB
DSUB IF ID EX MEM WB
DADDI IF ID EX MEM WB
BNEZ IF ID EX MEM WB

SD IF ID EX MEM SB

LD IF ID EX MEM

6 cycles.

2.

a. Cache has 4MB/32bytes per line =222 bytes/(25 bytes/line)=217 lines. 8-way
set associative so 217 lines/23 lines/set =214 sets.
• #bits of byte offset=lg(32)=5
• #bits of set index=lg(214)=14
• #bits of tag=32-(5+14)=13 (or 32-lg(222/23)=13)

b. Tag size * number of tags / bits per byte

13*217/8= 212992 bytes

c. Fully associative means tags are (32-5)=27 bits. 27*217/8= 442368 bytes
Direct-mapped means tags are (32-5-17)=10 bits. 9*217/8=163840 bytes

3. Offset is 4 bits. There are 210/24 =26 lines. Note the cache grabs all 16 bytes on a

miss.
a. Note there are 25 = 32 sets. So offset is first 4 bits, index is next 5, tag is last

7.
0x4001 Set 0: Compulsory miss
0x400A Set 0: Hit!
0x4017 Set 1: Compulsory miss
0x1000 Set 0, Compulsory miss
0x2000 Set 0, Compulsory miss
0x4000 Set 0, Conflict miss (a fully-associative cache would hit)
0x2005 Set 0, Hit!
0x4008 Set 0, Hit!

b. (note that index for DM is 6 bits…)
Address DM 2-way SA
0x0000 Set 0 Set 0
0x0200 Set 32 Set 0
0x0600 Set 32 Set 0
0x0000 Set 0 (hit) Set 0 (miss)

c.
Address DM 2-way SS
0x0000 Set 0 Set 0
0x0400 Set 0 Set 0
0x0000 Set 0 (miss) Set 0 (hit)

4.
a. characteristics that distinguish RISC from CISC:

• Fixed-length instructions (RISC) vs. variable-length instructions (CISC)
• RISC machines generally have dedicated memory instructions, CISC ALU

instructions tend to be able to directly address memory.
• RISC instructions tend to be simpler.

o You’d not expect to find “solve quadratic equation” as an instruction
in a RISC machine.

o As such, it tends to mean you need more instructions in a RISC
machine to do the same thing.

§ And in practice, few bits to encode those instructions (this isn’t
just because RISC instructions are simpler, it’s because CISC
machines can use small instruction encodings for commonly
used instructions.)

• CISC machines generally have more complex hardware to do more
specialized instsructions

b. Terms:
• Register pressure is when there aren’t as many registers available as you

could use.
• Register spills are when you move a value to memory because there

aren’t enough registers.
• Register fills (also called reloads) are when you retrieve that value from

memory. Register pressure results in spills and fills.

c. The register encodings each use 5 bits and the 16-bit constant obviously takes
16 bits. Thus 26 bits are used, leaving 6. Thus, this uses 1/26 of all the
encodings, or about 1.5625% of the possible encodings.

d. Disadvantages:
• Slow access time/more power/more die area (all more-or-less the same

thing)
• Instruction encoding gets harder as we need more bits to specify the

register.
 Advantages

• Fewer spills and fills
• Fewer false (name) dependencies.

5. Pay careful attention to the definition of “speedup” in our text. Just to be careful

we’ll note it refers to how long an action takes. On a single core it took 1.0 sec to do
1000 transactions, or 1ms per transaction. If the speedup were 1.25 it would take
1/1.25 or 0.8ms. Or put differently we’d be doing 1,250 transactions per second.

a. Quad-core: 0.7 speedup means we need 1.428571 ms for each transaction on a
single core. With all four cores we are looking at 0.8*1.42/4+0.2*1.42 which
is .57143ms. That is about 1750 transactions/sec.

8-core: 0.8*2/8+.2*2 = .6 ms per transaction, or about about 1667
transactions/sec.

b. The single core uses 100 mJ/transaction.

The quad-core uses about 77 mJ/transaction.
The 8-core uses 90mJ/transaction
Quad core wins!

c. Single core is still at 100mJ/transaction.
Quad core uses ~48mJ/transaction.
The 8-core uses 37.5mJ
8-core wins!

6. (use Q=X)
Q A B | D
0 0 0 | 1
0 0 1 | 0
0 1 0 | 1
0 1 1 | 0
1 0 0 | 0
1 0 1 | 0
1 1 0 | 0
1 1 1 | 1

Simplest answer is D=B’Q’+ABQ
Another answer is D=(Q^B)’(Q’+A) (in words, Q==B and (Q=0 or A=1))
If X=Q’, then D=QB+Q’(AB)’=(Q^B)’+Q’A’=[(Q^B)(Q+A)]’
Other equivalent answers acceptable

Possible drawings:

7.
a. Without the lock, you’d run the risk of two (or more) things incrementing at

the same time and only having it increment once. If both read count before
either of them changed it, they’d both end up reading the same original value
then saving back the same incremented value instead of incrementing the
value twice.

b. Two (or more) could enter the while loop before either sets lock to be 1.
Thus, you end up with the same problem as before.

c. Note that lock=1 is now removed.
int increment()
{
 while(TAS(lock)); //This stays here until TAS returns 0
 count=count+1;

lock=0;
}
Since the test and the set are atomic, it is no longer possible for multiple
threads to be in the while loop at the same time and perform the increment
simultaneously.

d.
• Both are intended to be changed by some other thread/process. You

declare such variables volatile so the complier knows that the value of
the variable may change at any time.

• None. Declaring something volatile has no impact on the caching of
that value.

• It tells the complier not to optimize away the memory access—it can’t
assume, for example, that the value will be the same as it was the last
time it was loaded. Among other things this means that the complier
can’t keep the value in a register and just keep grabbing the value from
that register.

8.
a. period = 0.5 ns or 500ps. Distance = 0.5ns * 3x108m/s = 15cm
b.

i) “R” (for resistance)
ii) Dynamic power is the energy consumed when transistors switch

during logic computation. Static power is the energy consumed
continuously due to the conduction that exists between Vcc and Gnd
through transistors (which creates leakage curret)

iii) 1) Capacitance, Voltage, and Frequency. 2) Because performance is
approximately proportional to frequency and frequency is more or less
proportional to voltage for a given design and a small voltage range.

c. SPECint and SPECfp are benchmarks used to judge the speed of a
microprocessor on standard integer and floating point workloads, respectively.
They are important because they are the most cited benchmarks for processor
performance and so computer architects pay close attention to them.

d.

• Resistance goes up by a factor of 2.
• The resistance goes down by a factor of 4 (4x the cross sectional

area)
• The resistance goes down by a factor of 2 (2x the cross sectional

area)
• Tin has a resistivity of about 1.09x10-7. Copper has a resistivity of

about 1.68 x 10-8 (These values will vary with temperature so you
may have slightly different numbers). So resistance will drop by
about 6.49x.

e. We’ll take any answer that seems to be even mildly on-point. Some key points
include:

• It’s a side channel attack that uses the data cache and measures the
timing behavior of operations on private data.

• Trains the branch predictor to misspeculate so it can do instructions on
a misspeculated path that won’t be committed. This avoids exceptions
being thrown on accesses to private data.

• Speculatively executed instruction(s) can bring private data into the
cache because the permission error isn’t broadcast until the instruction
is retired.

• Can observe timing behavior of operations relying on private data in
the cache to learn about the private data.

• No effective defense exists.

