
EECS 470 Lab 2
Synopsys Build System

Department of Electrical Engineering and Computer Science
College of Engineering
University of Michigan

January 18, 2024

(University of Michigan) Lab 2: Build System January 18, 2024 1 / 45

Overview

Administrivia

Generic Verilog Design
Preprocessor Directives
Parameters
Hierarchical Design

Tools
Make
VCS
Design Compiler

Project 2

(University of Michigan) Lab 2: Build System January 18, 2024 2 / 45

Administrivia

Administrivia

Homework
▶ Homework 1 is due Thursday, 18thth January 11:59pm (tonight, or

yesterday for Friday labs) on Gradescope

Projects

▶ Project 1 is due Tuesday, 23th January 11:59 PM (turn in via
submission script)

▶ Project 2 is due Tuesday, 30th January 11:59 PM (turn in via
submission script)

▶ We will monitor Piazza up to the project deadline. Please create a
private post if you are having trouble submitting.

We are available to answer your questions. Office hours can be found on
the course page and questions can be posted in the course Piazza.

(University of Michigan) Lab 2: Build System January 18, 2024 3 / 45

Administrivia

Administrivia

Labs
▶ Lab 1 is due on 1/24 (next Wednesday)!

▶ Note: The extension is for lab 1 only

▶ Lab 2 is due by 1/27!

(University of Michigan) Lab 2: Build System January 18, 2024 4 / 45

Generic Verilog Design Preprocessor Directives

Preprocessor Directives

What is a preprocessor?

▶ Prepares code/designs for compilation
▶ Combines included files
▶ Replaces comments and whitespace

Why do I care?

▶ Programmable

▶ Generic Designs (parameterized caches anyone?)

(University of Michigan) Lab 2: Build System January 18, 2024 5 / 45

Generic Verilog Design Preprocessor Directives

Verilog Macros

Definitions
▶ Syntax: `define <NAME> <value>

▶ Note: That is a tick, not an apostrophe before define
▶ The tick character is found with the ˜, usually above tab (on US

standard layout keyboards)

▶ Usage: `<NAME>

▶ Good for naming constants (can be used like wires)

▶ Convention dictates that macro names be in all caps

▶ Can also `undef <NAME>

(University of Michigan) Lab 2: Build System January 18, 2024 6 / 45

Generic Verilog Design Preprocessor Directives

Verilog Macros

Flow Control
Text inside flow control is conditionally included in the compiled source file.

`ifdef Checks if something is defined

`else Normal else behavior

`endif End the if

`ifndef Checks if something is not defined

(University of Michigan) Lab 2: Build System January 18, 2024 7 / 45

Generic Verilog Design Preprocessor Directives

Verilog Macros by Example

`define DEBUG

`define LOCKED 1'b0

`define UNLOCKED 1'b1

module turnstile(

input coin, push,

input clock, reset

`ifdef DEBUG

,output logic state

`endif

);

`ifndef DEBUG

logic state;

`endif

always_comb begin

next_state = state;

if (state==`LOCKED &&coin) next_state = `UNLOCKED;

if (state==`UNLOCKED&&push) next_state = `LOCKED;

end

always_ff @(posedge clock) begin

if (reset) state <= `LOCKED;

else state <= next_state;

end

endmodule

(University of Michigan) Lab 2: Build System January 18, 2024 8 / 45

Generic Verilog Design Preprocessor Directives

Verilog Headers

What is inclusion?
▶ Paste the code from the specified file where the directive is placed

Where will I use this?
▶ System defines separated out, e.g.

`define ALU_OP_ADD 5'b10101

`define DCACHE_NUM_WAYS 4'b0100

▶ Macro assertion functions, printing functions, etc.

▶ Note: headers are named with the .svh extension

(University of Michigan) Lab 2: Build System January 18, 2024 9 / 45

Generic Verilog Design Preprocessor Directives

Verilog Headers

Inclusion
▶ Syntax: `include <FILE NAME>

▶ Pastes the contents of <FILE NAME> wherever the include appears

Include Guards
▶ Inside the header. . .

`ifndef __FILE_NAME_H__

`define __FILE_NAME_H__

...
`endif

(University of Michigan) Lab 2: Build System January 18, 2024 10 / 45

Generic Verilog Design Preprocessor Directives

Verilog Inclusion by Example

and4.sv

`include "and2.v"

module and4(

input [3:0] in,

output logic out

);

logic [1:0] tmp;

and2 left (.a(in[1:0]),.x(tmp[0]));

and2 right(.a(in[3:2]),.x(tmp[1]));

and2 top (.a(tmp), .x(out));

endmodule

(University of Michigan) Lab 2: Build System January 18, 2024 11 / 45

Generic Verilog Design Preprocessor Directives

Verilog Inclusion by Example

and2.sv

module and2(

input [1:0] a,

output logic x

);

assign x = a[0] & a[1];

endmodule

(University of Michigan) Lab 2: Build System January 18, 2024 12 / 45

Generic Verilog Design Preprocessor Directives

Verilog Inclusion by Example

Better and2.sv

`ifndef __AND_2_SV__

`define __AND_2_SV__

module and2(

input [1:0] a,

output logic x

);

assign x = a[0] & a[1];

endmodule

`endif

(University of Michigan) Lab 2: Build System January 18, 2024 13 / 45

Generic Verilog Design Preprocessor Directives

More Information

Bibliography

Much of this information was taken from the Verilog Preprocessor paper
by Wilson Snyder of Cavium Networks. It is highly recommended reading.

(University of Michigan) Lab 2: Build System January 18, 2024 14 / 45

http://www.veripool.org/papers/Preproc_Good_Evil_SNUGBos10_paper.pdf

Generic Verilog Design Parameters

Parameters

What is a parameter?

▶ Constant defined inside a module

▶ Used to set module properties

▶ Can be overridden on instantiation

How do I use them?
▶ Definition

parameter NUM_CACHE_LINES = 8;

(University of Michigan) Lab 2: Build System January 18, 2024 15 / 45

Generic Verilog Design Parameters

Setting Parameters

Overriding

▶ Set parameters for a module on instantiation

▶ Allows for different versions different places

▶ Usage:
cache #(.NUM_CACHE_LINES(4)) d_cache(...);

defparam

▶ Set parameters for a module

▶ Usage:
defparam dcache.NUM_CACHE_LINES = 4;

(University of Michigan) Lab 2: Build System January 18, 2024 16 / 45

Generic Verilog Design Parameters

Macros Vs. Parameters

Macros
▶ Possibly globally scoped –

namespace collision

▶ Use for modules that can
change, but only have one
instance

▶ Particularly for caches and
naming arbitrary constants

▶ Needs the ` in usage

vs.

Parameters
▶ Locally scoped – no namespace

collision

▶ Use for modules with many
instances at different sizes

▶ Particularly for generate blocks
(which are in a later lab)

▶ Does not need extra characters
(like the `)

(University of Michigan) Lab 2: Build System January 18, 2024 17 / 45

Generic Verilog Design Hierarchical Design

Array Connections

▶ Make a simple module and duplicate it several times
▶ Assume we have a module defintion:

▶ one bit addr(a, b, cin, sum, cout);

▶ All ports are 1 bit, the first three inputs, last two outputs

▶ How do we build an eight bit adder?

(University of Michigan) Lab 2: Build System January 18, 2024 18 / 45

Generic Verilog Design Hierarchical Design

The Error Prone Way

module eight_bit_addr(

input en, cin,

input [7:0] a, b,

output [7:0] sum,

output cout);

wire [6:0] carries;

one_bit_addr a0(en, a[0], b[0], cin, sum[0], carries[0]);

one_bit_addr a1(en, a[1], b[1], carries[0], sum[1], carries[1]);

one_bit_addr a2(en, a[2], b[2], carries[1], sum[2], carries[2]);

one_bit_addr a3(en, a[3], b[3], carries[2], sum[3], carries[3]);

one_bit_addr a4(en, a[4], b[4], carries[3], sum[4], carries[4]);

one_bit_addr a5(en, a[5], b[5], carries[4], sum[5], carries[5]);

one_bit_addr a6(en, a[6], b[6], carries[5], sum[6], carries[6]);

one_bit_addr a7(en, a[7], b[7], carries[6], sum[7], cout);

endmodule

(University of Michigan) Lab 2: Build System January 18, 2024 19 / 45

Generic Verilog Design Hierarchical Design

The Error Prone Way

▶ Lots of duplicated code

▶ Really easy to make mistake

▶ Now try building a 64-bit adder..., 256?

▶ There is a one line substitute

(University of Michigan) Lab 2: Build System January 18, 2024 20 / 45

Generic Verilog Design Hierarchical Design

The Better Way

module eight_bit_addr(

input en, cin,

input [7:0] a, b,

output [7:0] sum,

output cout);

wire [6:0] carries;

one_bit_addr addr [7:0] (

.en(en), .a(a), .b(b), .cin({carries,cin}),

.sum(sum), .cout({cout,carries})

);

endmodule

All of the ports in the one bit addr module are 1 bit wide. All of the
busses we pass are 8 bits wide, so each instantiation of the module will get
one, except en which is only 1 bit wide and thus copied to every module.

(University of Michigan) Lab 2: Build System January 18, 2024 21 / 45

Generic Verilog Design Hierarchical Design

The (Even) Better Way

`define ADDR_WIDTH 8

module eight_bit_addr(

input en, cin,

input [(`ADDR_WIDTH-1):0] a, b,

output [(`ADDR_WIDTH-1):0] sum,

output cout);

wire [(`ADDR_WIDTH-2):0] carries;

one_bit_addr addr [(`ADDR_WIDTH-1):0] (

.en(en), .a(a),.b(b),.cin({carries,cin}),

.sum(sum),.cout({cout,carries})

);

endmodule

(University of Michigan) Lab 2: Build System January 18, 2024 22 / 45

Generic Verilog Design Hierarchical Design

Array Connections: Pitfalls and Errors

What happens if a wire isn’t 1 or N bits wide?

wire foo;

wire [3:0] bar;

wire [2:0] baz;

simple s1 [3:0](.a(foo), .b(bar), .c(baz));

test.v:14: error: Port expression width 3 does not match expected width 4 or 1

But still easy to accidentally promote a wire to a bus

(University of Michigan) Lab 2: Build System January 18, 2024 23 / 45

Tools Make

What is Make?

What is Make?
▶ Build System

▶ Automatically build an executable from source files
▶ Rules for building are stored in a Makefile

▶ Essentially a script of compilation commands

▶ Handles dependency resolution

Why do I care?

▶ simv is an executable

▶ Verilog files are source files

▶ vcs is a compilation command

(University of Michigan) Lab 2: Build System January 18, 2024 24 / 45

Tools Make

What is Make?

What is Make?
▶ Build System

▶ Automatically build an executable from source files
▶ Rules for building are stored in a Makefile

▶ Essentially a script of compilation commands

▶ Handles dependency resolution

Why do I care?

▶ simv is an executable

▶ Verilog files are source files

▶ vcs is a compilation command

(University of Michigan) Lab 2: Build System January 18, 2024 24 / 45

Tools Make

What is Make?

What is Make?
▶ Build System

▶ Automatically build an executable from source files
▶ Rules for building are stored in a Makefile

▶ Essentially a script of compilation commands

▶ Handles dependency resolution

Why do I care?

▶ simv is an executable

▶ Verilog files are source files

▶ vcs is a compilation command

(University of Michigan) Lab 2: Build System January 18, 2024 24 / 45

Tools Make

Anatomy of a Makefile

targets are what we want to build

dependencies are what we need to build it

commands are how to build it

This looks something like the following

target: dep1 dep2 ...

command1

command2

(University of Michigan) Lab 2: Build System January 18, 2024 25 / 45

Tools Make

Example Makefile Commands

simv: $(TESTBENCH) $(SOURCES)

$(VCS) $^ -o $@

syn_simv: $(TESTBENCH) $(SYNTH_FILES)

$(VCS) +define+SYNTH $^ $(LIB) -o $@

What does the $() syntax mean?

(University of Michigan) Lab 2: Build System January 18, 2024 26 / 45

Tools Make

Makefile Variables

A variable is a way to store commands or strings.

VCS = SW_VCS=2020.12-SP2-1 vcs -sverilog +vc -Mupdate -line -full64 -kdb -lca

-debug_access+all+reverse↪→

TESTBENCH = full_adder_1bit_test.sv

SOURCES = full_adder_1bit.sv

simv: $(TESTBENCH) $(SOURCES)

$(VCS) $^ -o $@

(University of Michigan) Lab 2: Build System January 18, 2024 27 / 45

Tools Make

Dependency Resolution

What does it mean to be a dependency?

▶ Dependencies are used during compilation, e.g. list of source files

▶ Might be intermediate or primary

How does Make resolve dependencies?

▶ Does the target exist?

No – Build it.
Yes – When was it built in relation to the dependencies?

After – Stop.
Before – Rebuild.

(University of Michigan) Lab 2: Build System January 18, 2024 28 / 45

Tools Make

Automatic Makefile Variables

$@ The Current Target Name

$^ A List of All Dependencies

$< The First Prerequisite

$? A List of All Dependencies Requiring Rebuilding

(University of Michigan) Lab 2: Build System January 18, 2024 29 / 45

Tools Make

Special Makefile Targets

.DEFAULT GOAL Sets what runs when make is executed with no
arguments

.PHONY Dependencies will be built unconditionally

.PRECIOUS Dependencies will be kept, intermediate or not

.SECONDARY Dependencies are automatically treated as
intermediates, but not deleted

(University of Michigan) Lab 2: Build System January 18, 2024 30 / 45

Tools Make

Make Resources

▶ GNU Make Manual
▶ Special Targets
▶ Automatic Variables
▶ Makefile Conventions

▶ Wikipedia - Make (Software)

(University of Michigan) Lab 2: Build System January 18, 2024 31 / 45

http://www.gnu.org/software/make/manual/make.pdf
http://en.wikipedia.org/wiki/Make_(software)

Tools VCS

Intro to VCS

What is VCS?
▶ Synopsys Verilog Compiler Simulator

▶ Builds Simulators from Verilog (structural or behavioral)

▶ We barely manage to brush the surface. . .

Why do we care?

▶ Knowledge is power. . .

▶ . . . Specifically the power to debug

(University of Michigan) Lab 2: Build System January 18, 2024 32 / 45

Tools VCS

VCS by Example

VCS = SW_VCS=2020.12-SP2-1 vcs -sverilog +vc -Mupdate -line -full64 -kdb -lca

-debug_access+all+reverse↪→

SW VCS CAEN specific; sets which one of the installed VCS versions is
run

-sverilog Interpret designs using the SystemVerilog standard

+vc Allow direct C code hooks in the design

-Mupdate Compile incrementally

-line Allow interactive debugging (might need other options)

-full64 Build 64 bit executables

-kdb Generates Verdi Knowledge Database (KDB). KDB stores
detailed design information from the source files

-lca Enables Limited Customer Availability (LCA) features in Verdi.

-debug access Enables dumping to Fast Signal Database (FSDB) used by
Verdi. FSDB stores the simulation results in a compact format.
+all enables all debug capabilities and +reverse enables reverse
debugging

(University of Michigan) Lab 2: Build System January 18, 2024 33 / 45

Tools VCS

More VCS Options

+define Define a `define macro
Ex. +define+DEBUG, Ex. +define+CLK=10

+lint=all Provide many more warnings

-gui=verdi Opens Verdi

-o Name of the executable generated

-R Run the executable after compilation

(University of Michigan) Lab 2: Build System January 18, 2024 34 / 45

Tools Design Compiler

Intro to Design Compiler and Synthesis

What is synthesis?

▶ The process of turning Behavioral Verilog into Structural Verilog

▶ Using a technology library

Why do I care?

▶ Example of how a design might be built
▶ Informed guesses about. . .

▶ Power
▶ Area
▶ Performance

(University of Michigan) Lab 2: Build System January 18, 2024 35 / 45

Tools Design Compiler

Intro to Design Compiler and Synthesis

What is Design Compiler?

▶ The Synopsys synthesis tool

▶ Industry-leading

▶ Uses scripts written in the Tool command Language (TcL)

(University of Michigan) Lab 2: Build System January 18, 2024 36 / 45

Tools Design Compiler

Intro to Design Compiler and Synthesis

We’ve simplified things!

▶ In new updates, we’ve abstracted away much of the hassle of using
dc_shell with the 470synth.tcl file integrated with the Makefile.

▶ The Makefile communicates arguments to the TcL file using
environment variables.

▶ The TcL file has an extensive description at the top, feel free to read
it!

▶ The following Make target synthesizes a module whose name matches
the name of the file.

export CLOCK_PERIOD = 10.0

TCL_SCRIPT = 470synth.tcl

%.vg: %.sv | $(TCL_SCRIPT)

MODULE=$* SOURCES="$^" dc_shell-t -f $(TCL_SCRIPT)

(University of Michigan) Lab 2: Build System January 18, 2024 37 / 45

Project 2

Project 2 Overview

Part 1: Pipelined Multiplier

▶ Change the pipeline depth

▶ Synthesize at each size

Part 2: Integer Square Root

▶ Finite state machine implementation

▶ Synthesis

(University of Michigan) Lab 2: Build System January 18, 2024 38 / 45

Project 2

Pipelined Multiplication

Partial Products
▶ Multiply the first n bits of the two components

▶ Multiply the next n bits, etc.

▶ Sum the partial products to get the answer

(University of Michigan) Lab 2: Build System January 18, 2024 39 / 45

Project 2

Pipelined Multiplication by Example

Binary Multiplication
0 0 0 1 1 1

× 0 1 0 1

0 0 0 1 1 1
0 0 0 0 0 0
0 1 1 1 0 0

+ 0 0 0 0 0 0

1 0 0 0 1 1

Decimal Multiplication
7

× 5

3 5

(University of Michigan) Lab 2: Build System January 18, 2024 40 / 45

Project 2

Pipelined Multiplication by Example

Example: 4-stage Pipelined Multiplication
multiplicand: 00001011

multiplier: 00000111
partial product: 00000000

0 0 0 0 1 0 1 1
× 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

(University of Michigan) Lab 2: Build System January 18, 2024 41 / 45

Project 2

Pipelined Multiplication by Example

Example: 4-stage Pipelined Multiplication
multiplicand: 00001011 << 2

multiplier: 00000111 >> 2

partial product: 00100001

0 0 0 0 1 0 1 1
× 0 0 0 0 0 0 1 1

0 0 1 0 0 0 0 1

(University of Michigan) Lab 2: Build System January 18, 2024 41 / 45

Project 2

Pipelined Multiplication by Example

Example: 4-stage Pipelined Multiplication
multiplicand: 00101100

multiplier: 00000001
partial product: 00100001

0 0 1 0 1 1 0 0
× 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

(University of Michigan) Lab 2: Build System January 18, 2024 41 / 45

Project 2

Pipelined Multiplication by Example

Example: 4-stage Pipelined Multiplication
multiplicand: 00101100 << 2

multiplier: 00000001 >> 2

partial product: 01001101

0 0 1 0 1 1 0 0
× 0 0 0 0 0 0 0 1

0 0 1 0 1 1 0 0

(University of Michigan) Lab 2: Build System January 18, 2024 41 / 45

Project 2

Part 2 Hints

ISR Algorithm

▶ Guess-and-check

▶ Loop from the top bit of the guess to the bottom

▶ Basically binary search for a solution

Hardware Implementation

▶ How do we implement this in hardware?

(University of Michigan) Lab 2: Build System January 18, 2024 42 / 45

Project 2

Part 2 Hints

ISR State Machine
Computing:

√
value

▶ On a reset
▶ guess initialized to 32’h8000 0000
▶ value is clocked into a register

▶ guess gets the next bit set each time we cycle through the FSM again
▶ Square guess (multiply it with itself)

▶ Wait until the multiplier raises its done

▶ if guess <= value
▶ Keep the current bit

▶ else
▶ Clear the current bit

▶ Move to the next bit

▶ After the last bit, raise done

(University of Michigan) Lab 2: Build System January 18, 2024 43 / 45

Project 2

Part 2 Hints

Reminders
▶ Remember to declare bitwidths for signals, e.g.

64’hFFFF FFFF FFFF FFFF

▶ It must take less than 600 cycles to compute a square root

▶ Remember to use the 8-stage multiplier for this

▶ Remember to check for proper reset behavior

(University of Michigan) Lab 2: Build System January 18, 2024 44 / 45

Project 2

Lab Assignment

▶ Assignment is posted on the course web site.
▶ If you get stuck. . .

▶ Ask a neighbor!
▶ Ask us in Office Hours!
▶ Ask on Piazza!

▶ When you are finished, put yourself on help queue to get checked off

▶ Check-off is due at the end of the day of next lab

(University of Michigan) Lab 2: Build System January 18, 2024 45 / 45

https://www.eecs.umich.edu/courses/eecs470/?page=schedule.php
https://oh.eecs.umich.edu/courses/eecs470

	Administrivia
	Generic Verilog Design
	Preprocessor Directives
	Parameters
	Hierarchical Design

	Tools
	Make
	VCS
	Design Compiler

	Project 2

