
EECS 470 Lab 3
SystemVerilog Style Guide

Department of Electrical Engineering and Computer Science
College of Engineering
University of Michigan

Thursday, 25th January 2024

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 1 / 39

Overview

Administrivia

Verilog Style Guide

Verilog Style Guide
Brevity
Indentation and Alignment
SystemVerilog Features

Finite State Machines

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 2 / 39

Administrivia

Administrivia

Homework
▶ Homework 2 is due Friday, 2nd February at 10PM (via Gradescope)

Projects

▶ Project 2 is due Tuesday, 30th January at 11:59PM (via submission
script)

Help

We are available to answer questions on anything here. Office hours can
be found on the course web site.

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 3 / 39

https://www.eecs.umich.edu/courses/eecs470/

Verilog Style Guide

Verilog Style

What is good style?

▶ Easy to read

▶ Easy to understand

▶ Easy to maintain

▶ High reusability

▶ Mostly a matter of personal/team preference, or ”First-Come
First-Serve”

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 4 / 39

Verilog Style Guide

Verilog Style

Why should I use good style?

▶ Easier to debug: save your sanity

▶ Important for group work: give your teammate(s) an easier life :)

▶ Mandatory in projects 1-3

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 5 / 39

Verilog Style Guide

Verilog Style Rules

Goal: Clarity

▶ We’ll look at a bad example

▶ Then how to fix it

▶ Derive a rule

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 6 / 39

Verilog Style Guide Brevity

Brevity by Example

Example
always_comb

begin

if (foo[3] == 1'b1)

begin

bar[3] = 1'b1;

bar[2] = 1'b0;

bar[1] = 1'b1;

bar[0] = 1'b1;

end else if (foo[2] == 1'b1)

begin

bar[3] = 1'b0;

bar[2] = 1'b1;

bar[1] = 1'b0;

bar[0] = 1'b0;

end

end

vs.

Example Reformatted
always_comb

begin

if (foo[3]) bar = 4'b1011;

else if (foo[2]) bar = 4'b0100;

end

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 7 / 39

Verilog Style Guide Brevity

Brevity by Example

Example
always_comb

begin

if (foo[3] == 1'b1)

begin

bar[3] = 1'b1;

bar[2] = 1'b0;

bar[1] = 1'b1;

bar[0] = 1'b1;

end else if (foo[2] == 1'b1)

begin

bar[3] = 1'b0;

bar[2] = 1'b1;

bar[1] = 1'b0;

bar[0] = 1'b0;

end

end

vs.

Example Reformatted
always_comb

begin

if (foo[3]) bar = 4'b1011;

else if (foo[2]) bar = 4'b0100;

end

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 7 / 39

Verilog Style Guide Brevity

Brevity by Example

Example
logic [5:0] shift;

always_ff @(posedge clock)

begin

if (reset)

begin

shif_reg <= 6'b0;

end else begin

shift[0] <= foo;

shift[1] <= shift[0];

shift[2] <= shift[1];

shift[3] <= shift[2];

shift[4] <= shift[3];

shift[5] <= shift[4];

end

end

vs.

Example Reformatted
logic [5:0] shift;

always_ff @(posedge clock)

begin

if (reset)

begin

shift <= 6'b0;

end else begin

shift <= {shift[4:0], foo};

end

end

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 8 / 39

Verilog Style Guide Brevity

Brevity by Example

Example
logic [5:0] shift;

always_ff @(posedge clock)

begin

if (reset)

begin

shif_reg <= 6'b0;

end else begin

shift[0] <= foo;

shift[1] <= shift[0];

shift[2] <= shift[1];

shift[3] <= shift[2];

shift[4] <= shift[3];

shift[5] <= shift[4];

end

end

vs.

Example Reformatted
logic [5:0] shift;

always_ff @(posedge clock)

begin

if (reset)

begin

shift <= 6'b0;

end else begin

shift <= {shift[4:0], foo};

end

end

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 8 / 39

Verilog Style Guide Brevity

Brevity Rule

Rule
Brevity is (often) strongly correlated with the optimal solution. Be brief,
where you can.

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 9 / 39

Verilog Style Guide Brevity

Brevity Rule

Is brevity always better? Not necessarily...You also need to be clear

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 10 / 39

Verilog Style Guide Brevity

General Requirements

Clarity Rules

▶ Use meaningful names for signal; wire wire; is confusing

▶ Comment your designs; (a ^ b ~^ c) | (&d) is unintelligible
without an explanation

▶ Conceptualize what you need to build before you start writing Verilog.
A state machine diagram will be make the Verilog much easier. . .

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 11 / 39

Verilog Style Guide Brevity

General Requirements

Clarity Rules

▶ Starter guide on signal namings: https://github.com/lowRISC/
style-guides/blob/master/VerilogCodingStyle.md#naming

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 12 / 39

https://github.com/lowRISC/style-guides/blob/master/VerilogCodingStyle.md##naming
https://github.com/lowRISC/style-guides/blob/master/VerilogCodingStyle.md##naming

Verilog Style Guide Brevity

Clarity by Example

Example
logic enable;

always_comb

begin

enable =

(op[0]^op[1] | op[2] & op[3])?

1'b1: 0'b0;

end

vs.

Example Reformatted
logic enable;

always_comb

begin

if(op[3])

begin

if(op[2])

begin

enable = 1'b1;

end else if(op[0] ^ op[1])

begin

enable = 1'b1;

end else begin

enable = 1'b0;

end

end else begin

enable = 1'b0;

end

end

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 13 / 39

Verilog Style Guide Brevity

Clarity by Example

Example
logic enable;

always_comb

begin

enable =

(op[0]^op[1] | op[2] & op[3])?

1'b1: 0'b0;

end

vs.

Example Reformatted
logic enable;

always_comb

begin

if(op[3])

begin

if(op[2])

begin

enable = 1'b1;

end else if(op[0] ^ op[1])

begin

enable = 1'b1;

end else begin

enable = 1'b0;

end

end else begin

enable = 1'b0;

end

end

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 13 / 39

Verilog Style Guide Brevity

Brevity & Clarity Rules

▶ Use commonsense and intuition.

▶ Ask your teammate(s) to peer-review.

▶ Use the names to describe what is happening
▶ For example:

▶ ” d” suffix for combinational wires
▶ ” q” suffix for sequential registers
▶ ” n” for active low signals
▶ Macros or parameters for describing names of states.

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 14 / 39

Verilog Style Guide Indentation and Alignment

Indentation

Why are we interested in indentation?

▶ Readability – easier to trace down

▶ Clarity – easier to check what is in a given scope

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 15 / 39

Verilog Style Guide Indentation and Alignment

Indentation by Example

Example
always_comb

begin

if(cond)

begin

n_state = `IDLE;

n_gnt = `NONE;

end else begin

n_state = `TO_A;

n_gnt = `GNT_A;

end

end

vs.

Example Reformatted
always_comb

begin

if (cond)

begin

n_state = `IDLE;

n_gnt = `NONE;

end else begin

n_state = `TO_A;

n_gnt = `GNT_A;

end

end

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 16 / 39

Verilog Style Guide Indentation and Alignment

Indentation by Example

Example
always_comb

begin

if(cond)

begin

n_state = `IDLE;

n_gnt = `NONE;

end else begin

n_state = `TO_A;

n_gnt = `GNT_A;

end

end

vs.

Example Reformatted
always_comb

begin

if (cond)

begin

n_state = `IDLE;

n_gnt = `NONE;

end else begin

n_state = `TO_A;

n_gnt = `GNT_A;

end

end

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 16 / 39

Verilog Style Guide Indentation and Alignment

Indentation Rule

Rule
Items within the same scope should have the same indentation.

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 17 / 39

Verilog Style Guide Indentation and Alignment

Alignment

Why are we interested in alignment?

▶ Readability – easier to trace down

▶ Clarity – easier to check that everything is assigned

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 18 / 39

Verilog Style Guide Indentation and Alignment

Alignment by Example

Example
always_comb

begin

if (cond)

begin

n_state = `IDLE;

n_gnt = `NONE;

end else begin

n_state = `TO_A;

n_gnt = `GNT_A;

end

end

vs.

Example Reformatted
always_comb

begin

if (cond)

begin

n_state = `IDLE;

n_gnt = `NONE;

end else begin

n_state = `TO_A;

n_gnt = `GNT_A;

end

end

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 19 / 39

Verilog Style Guide Indentation and Alignment

Alignment by Example

Example
always_comb

begin

if (cond)

begin

n_state = `IDLE;

n_gnt = `NONE;

end else begin

n_state = `TO_A;

n_gnt = `GNT_A;

end

end

vs.

Example Reformatted
always_comb

begin

if (cond)

begin

n_state = `IDLE;

n_gnt = `NONE;

end else begin

n_state = `TO_A;

n_gnt = `GNT_A;

end

end

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 19 / 39

Verilog Style Guide Indentation and Alignment

Alignment by Example

Example

assign mux_out = (cond1) ? (foo1&bar): (cond2) ? (foo2+cnt3) :

(cond3) ? (foo3&~bar2) : 0;

Example Reformatted

assign mux_out = (cond1) ? (foo1 & bar) :

(cond2) ? (foo2 + cnt3) :

(cond3) ? (foo3 & ~bar2) : 0;

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 20 / 39

Verilog Style Guide Indentation and Alignment

Alignment by Example

Example

assign mux_out = (cond1) ? (foo1&bar): (cond2) ? (foo2+cnt3) :

(cond3) ? (foo3&~bar2) : 0;

Example Reformatted

assign mux_out = (cond1) ? (foo1 & bar) :

(cond2) ? (foo2 + cnt3) :

(cond3) ? (foo3 & ~bar2) : 0;

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 20 / 39

Verilog Style Guide Indentation and Alignment

Alignment Rule

Rule
▶ Assignments should be aligned by column.

▶ Ternary statements should have the conditionals aligned, and each
“if” should be on a new line.

▶ Try to align bit width declaration and indices when possible

▶ Spaces are preferable over tabs for portability across IDEs

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 21 / 39

Verilog Style Guide SystemVerilog Features

SystemVerilog Types

User-defined Types

▶ Useful for cleaning repeated declarations, specifically bundling
connections

▶ Types can be named informatively, e.g. arch reg t

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 22 / 39

Verilog Style Guide SystemVerilog Features

Structs

About struct
▶ A package of signals (wire or logic)
▶ Basically follow C conventions

▶ List of signal declarations
▶ Named with t ending

Syntax

▶ struct

▶ List of signals between braces ({})
▶ Name after braces, followed by a semicolon (;)

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 23 / 39

Verilog Style Guide SystemVerilog Features

Structs

Example
typedef struct {

logic [7:0] a; //Structs can contain

logic b; //other structs, like

arch_reg_t c; //<-- this line

} example_t; //named with _t

Example
typedef struct packed {

addr_t pc;

logic valid;

} prf_entry_t;

Usage Example
prf_entry_t [31:0] prf;

assign prf[1].valid = 1'b0;

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 24 / 39

Verilog Style Guide SystemVerilog Features

Enums

About enum
▶ List of possible values, but named instead of numbered

▶ Good for state machine states

▶ Can be shown in Verdi instead of the associated value

Verdi Example

Syntax
▶ enum

▶ List of values between braces ({})
▶ Name after braces, followed by a semicolon (;)

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 25 / 39

Verilog Style Guide SystemVerilog Features

Enums

Example
typedef enum logic [3:0] {

IDLE, //=0, by default

GNT[0:7], //Expands to GNT0=1,...GNT7=8

RESET //=9

} arb_state;

Example
typedef enum logic [1:0] {

ADD = 2'b00, //The value associated with

MULT = 2'b10, //a particular name can be

NOT = 2'b11, //assigned explicitly.

AND = 2'b01

} opcode;

Usage Example
arb_state state, n_state;

assign n_state = IDLE;

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 26 / 39

Verilog Style Guide SystemVerilog Features

Typedef

About typedef

▶ Necessary for reuse of a struct or enum
▶ Without a typedef, a struct/enum must be redefined at each

instance declaration

▶ Also useful in clearly naming commonly sized buses

Syntax

▶ typedef

▶ by any signal declaration or struct or enum declaration

▶ Name for the type followed by a semicolon (;)

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 27 / 39

Verilog Style Guide SystemVerilog Features

Typedef by Example

Example: Typedef’d Enum
//typedef, then definition, then name;

typedef enum logic [3:0] {

IDLE,

GNT[0:7],

RESET

} arb_state;

Example: Type Synonym
//typedef, then definition, then name;

typedef logic [63:0] addr;

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 28 / 39

Finite State Machines

Procedural FSM Design

FSM Process
▶ All states should be typedef enum

▶ All next state logic should go into a combinational block, following all
combinational rules

▶ All resets should be synchronous (to the clock)

▶ All output assignments should go in their own combinational block

▶ The only logic in the sequential block should be the state assignment
(to the computed next state)

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 29 / 39

Finite State Machines

Finite State Machine Skeleton

typedef enum logic [(NUM_STATES-1):0] { STATES } fsm_state;

module fsm(

input wire inputs,

output logic outputs

);

fsm_state state, next_state;

always_comb begin

/* Transitions from a diagram go here */

/* next state = f (inputs, state) */

end

always_ff @(posedge clock) begin

if(reset) begin

state <= DEFAULT;

end else begin

state <= next_state;

end

end

endmodule

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 30 / 39

Finite State Machines

Finite State Machine Example

typedef enum logic { LOCKED, UNLOCKED } ts_state;

module turnstile(

input wire coin, push,

input wire clock, reset,

output ts_state state

);

ts_state next_state;

always_comb begin

next_state = state;

if (state==LOCKED && coin) next_state = UNLOCKED;

if (state==UNLOCKED && push) next_state = LOCKED;

end

always_ff @(posedge clock) begin

if (reset) state <= LOCKED;

else state <= next_state;

end

endmodule

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 31 / 39

Finite State Machines

Coverage

▶ So last time we talked about why to write a testbench

▶ We also talked about how to write a good testbench

▶ All metrics that we talked about are rather qualitative, though

▶ How do we quantitatively measure how good a testbench is? Code
coverage!

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 32 / 39

Finite State Machines

Coverage Cont.

Code Coverage Types

▶ Line Coverage — measures statements in your HDL code that have
been executed in the simulation

▶ Toggle Coverage — measures the bits of logic that have toggled
during simulation. A toggle simply means that a bit changes from 0
to 1 or from 1 to 0.
▶ One of the oldest metrics of coverage in hardware designs and can be

used at both the register transfer level (RTL) and gate level.
▶ May give low numbers if you have wide signals (ex: adding 64 bit

numbers)

▶ Condition Coverage — measures how the variables or
sub-expressions in the conditional statements are evaluated during
simulation. It can find errors in the conditional statements that
cannot be found by other coverage analysis.

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 33 / 39

Finite State Machines

Coverage Cont.

Code Coverage Types Cont.

▶ Branch Coverage — measures the coverage of expressions and case
statements that affect the control flow (such as if-statement and
while-statement) of the HDL. It focuses on the decision points that
affect the control flow of the HDL execution.

▶ FSM Coverage — verifies that every legal state of the state machine
has been visited and that every transition between states has been
covered.

▶ For more information about coverage, feel free to ask us or search
online!

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 34 / 39

Finite State Machines

Coverage Cont.

Coverage compile time options

▶ -cm line|cond|fsm|tgl|branch|assert

▶ The arguments specifies the types of coverage:
▶ line - Compile for line or statement coverage.
▶ cond - Compile for condition coverage.
▶ fsm - Compile for FSM coverage.
▶ tgl - Compile for toggle coverage.
▶ branch - Compile for branch coverage
▶ assert - Compile for SystemVerilog assertion coverage.

▶ If you want VCS to compile for more than one type of coverage, use
the plus (+) character as a delimiter between arguments, for example:

▶ vcs -sverilog -xprop=tmerge +vc -Mupdate -line -full64

-kdb -lca -nc -debug access -cm fsm+tgl mydesign.sv

mytest.sv -o simv
▶ ./simv -cm fsm+tgl

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 35 / 39

Finite State Machines

Coverage example

Run make verdi cov in the lab 3 scripts to open Verdi in coverage mode.

Verdi Coverage

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 36 / 39

Finite State Machines

Coverage example Cont.

Verdi Coverage

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 37 / 39

Finite State Machines

Coverage Cont.

We will come back to this later in the final project. As part of milestone 1,
you will need to submit a module along with a testbench and we will grade
you based on your coverage percentage, but that’ll be much later. In the
meanwhile... Give it a try on your project 2 testbench!

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 38 / 39

Finite State Machines

Lab Assignment

▶ Assignment is posted to the course website as Lab 3 Assignment.
▶ If you get stuck. . .

▶ Ask a neighbor, quietly
▶ Put yourself in the help queue

▶ When you are finished, put yourself on help queue to get checked off.

▶ If you are unable to finish today, the assignment needs to be checked
off by next Friday.

(University of Michigan) Lab 3: Style Thursday, 25th January 2024 39 / 39

http://www.eecs.umich.edu/eecs/courses/eecs470
https://oh.eecs.umich.edu/courses/eecs470

	Administrivia
	Verilog Style Guide
	Verilog Style Guide
	Brevity
	Indentation and Alignment
	SystemVerilog Features

	Finite State Machines

