
EECS 470 Lab 4
Linux Shell Scripting

Department of Electrical Engineering and Computer Science
College of Engineering
University of Michigan

Thursday, 1st February, 2024

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 1 / 40

Overview

Administrivia

UNIX
Files
Utilities
Connecting Utilities

Bourne Again Shell
Variables
Flow Control
Functions
Globbing

Scripting

Assignment

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 2 / 40

Administrivia

Administrivia

Homework
▶ Homework 2 is due Friday, 2nd February

Projects
▶ The project 3 milestone is due Monday, 5th February
▶ Project 3 is due Sunday, 11th February

We are available to answer questions on anything here. Office hours can be
found in the course website.

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 3 / 40

https://www.eecs.umich.edu/courses/eecs470/?page=home.php

UNIX

UNIX

What is UNIX?
▶ Mainframe operating system
▶ The basis for many modern operating systems, e.g. Linux, BSD, Mac

OSX

History of UNIX
▶ Written at Bell Labs in 1969
▶ Original creators: Dennis Ritchie, Ken Thompson and Rob Pike
▶ First version of BSD is installed in 1974
▶ Last Bell Labs UNIX (Version 7) is published in 1979
▶ The GNU Project is started by Richard Stallman
▶ Linux Torvalds writes a monolithic kernel operating system in 1991

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 4 / 40

UNIX

UNIX Philosophy

“This is the Unix philosophy: Write programs that do one thing and do it
well. Write programs to work together. Write programs to handle text
streams, because that is a universal interface.”

– Douglas McIlroy

“Everything is a file descriptor or a process.”
– Linus Torvalds

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 5 / 40

UNIX Files

Files

What is a file?
▶ Anything referenced through a filesystem
▶ Anything with a file descriptor

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 6 / 40

UNIX Files

Types of Files

▶ Regular – Anything not in one of the following categories
▶ Directory – Can contain other files and directories (read up on inodes

sometime)
▶ Symbolic Link – A pointer to another file
▶ Pipe – Covered in a few slides
▶ Socket – Covered in EECS 482/489

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 7 / 40

UNIX Files

Permissions

r w x - - - - - -
User Group Other

Table: UNIX permissions are represented
with one bit for each permission in each
category, e.g. 700.

Three Permissions
▶ Read
▶ Write
▶ Execute

Three Categories
▶ User
▶ Group
▶ Other

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 8 / 40

UNIX Utilities

Utilities

What is a utility?
▶ A program used to process text streams/files
▶ Called from some command line/shell

Why do I care?
▶ Utilities form the basis of “Linux skills”
▶ Useful for automation
▶ Necessary for today’s lab

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 9 / 40

UNIX Utilities

Navigation Utilities

pwd
▶ Description: print working directory – where you are
▶ Synopsis: pwd [OPTIONS]

ls
▶ Description: list directory contents
▶ Synopsis: ls [OPTIONS]... [FILE] ...

cd
▶ Description: change directory
▶ Synopsis: cd [OPTIONS] [PATH]

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 10 / 40

UNIX Utilities

File Utilities

cp
▶ Description: copy files
▶ Synopsis: cp [OPTONS]... SOURCE DEST

mv
▶ Description: move files
▶ Synopsis: mv [OPTONS]... SOURCE DEST

rm
▶ Description: remove files
▶ Synopsis: rm [OPTONS]... FILE...

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 11 / 40

UNIX Utilities

diff

Description
▶ Shows the line-by-line differences between files
▶ Good for checking if your output is correct

Synopsys
▶ diff [OPTIONS] FILES

Examples
▶ diff -uy ../project3_correct/writeback.out writeback.out
▶ vimdiff ../project3_correct/writeback.out writeback.out

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 12 / 40

UNIX Utilities

Graphical Diff

Alternatives to diff
Parsing output of diff is hard, so it might be useful to use some kind of
“graphical diff” tool, like vimdiff, which opens up two files side-by-side in
Vim showing their differences. Try it and you’ll see how much easier to
parse this.

Using git for diff
You can use git’s diff viewer on any files by running this command, or save
it as an alias in your .bash_profile
▶ git diff –no-index –minimal –color-moved file1 file2
▶ alias diff=’git diff –no-index –minimal –color-moved’

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 13 / 40

UNIX Utilities

grep

Description
▶ Print lines matching a pattern

Synopsys
▶ grep [OPTIONS] PATTERN [FILE]

Examples
▶ grep ’@@@’ program.out
▶ ps -axfuw | grep "$USER" | grep "vcs"

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 14 / 40

UNIX Utilities

Regular Expressions

▶ Really powerful/useful
▶ Complicated, and beyond the scope of this presentation
▶ Read up on them

▶ at Wikipedia
▶ in the grep manual

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 15 / 40

http://en.wikipedia.org/wiki/Regular_expressions
http://www.gnu.org/software/grep/manual/grep.html#Regular-Expressions

UNIX Utilities

man

Description
▶ An interface to the on-line reference manuals (pager)

Synopsys
▶ man PAGE

Examples
▶ man grep
▶ man diff

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 16 / 40

http://www.gnu.org/software/grep/manual/grep.html
http://www.gnu.org/software/diffutils/manual/diffutils.html

UNIX Utilities

Pager

Definition
▶ A program which allows browsing of large text files by breaking them

into screen-sized chunks.

Examples
▶ less
▶ man

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 17 / 40

UNIX Utilities

Other Utilities

These will be useful. . .
▶ cut
▶ touch
▶ tee
▶ xargs

▶ tail
▶ column
▶ find
▶ less

These are harder, but even more useful. . .

▶ sed
▶ awk
▶ patch
▶ vi(m)

▶ fmt
▶ tmux

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 18 / 40

UNIX Connecting Utilities

Program Features

Methods of Communication
▶ Standard Text Streams

▶ stdin
▶ stdout
▶ stderr

▶ Return value/code

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 19 / 40

UNIX Connecting Utilities

Return Codes

What is a return code?
▶ The integer value a program returns (e.g. return(0);)
▶ Conventionally, returning zero indicates success, non-zero failure
▶ Specific values other than zero mean different things for different

programs

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 20 / 40

UNIX Connecting Utilities

Standard Text Streams

stdin
▶ The default input to a program
▶ From a keyboard by default

stdout
▶ The default output of a program
▶ To a display by default

stderr
▶ The default error output of a program
▶ To a display by default, requires additional effort to save

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 21 / 40

UNIX Connecting Utilities

Connecting Utilities

Why do we want to connect utilities?
▶ Combination jobs without intermediate files
▶ e.g. take the diff of two different grep operations (what you need to

do for today’s lab)

How can we connect utilities?
▶ Pipes
▶ Redirection

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 22 / 40

UNIX Connecting Utilities

Pipe

What is a pipe?
▶ Connects the stdout of one program to the stdin of another
▶ Does not connect stderr

How do I use one?
▶ Call a program on one side of the | and then call another on the other

side
▶ e.g. dmesg | less

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 23 / 40

UNIX Connecting Utilities

Pipe: xargs

Problem
What if we want to pipe to utility that uses arguments instead of input?

Solution: xargs
xargs splits input into individual items and calls the program that is its
argument once for each input.

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 24 / 40

http://en.wikipedia.org/wiki/Xargs

UNIX Connecting Utilities

Redirection

What is redirection?
▶ Allows for modification of the standard text streams

▶ stdin is 0
▶ stdout is 1
▶ stderr is 2

▶ Several types:
0< Use a file instead of the keyboard for stdin
i> Use a file instead of the terminal for the stream i

i>> Like i>, but append to a file instead of overwriting
i>&j Put stream i into the same place as stream j

Advanced Bash Scripting Guide: I/O Redirection

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 25 / 40

http://www.tldp.org/LDP/abs/html/io-redirection.html

UNIX Connecting Utilities

Redirection by Example

Example
▶ ./vs-asm < test_progs/evens.s > program.mem

Example
▶ make | tee 2>&1 build.out

Example
▶ ./test 1>&2 2>&3

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 26 / 40

Bourne Again Shell

Shell

What is a shell?
▶ Before we had graphical environments, we had text shells
▶ Basically, an interpreter for commands, executing programs and saving

information
▶ Possibly a Read-Execute-Print-Loop (REPL)

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 27 / 40

Bourne Again Shell

Bourne Again Shell

What is BASH?
▶ Stands for the Bourne Again Shell
▶ Created in 1989 by Brian Fox
▶ Default shell in most Linux distributions and older Mac OSX

▶ Mac OSX switched to zsh a couple years ago

Why BASH?
▶ Default in CAEN Redhat
▶ What most people learn first

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 28 / 40

Bourne Again Shell

Warning

Warning
Everything after this slide will be specific to BASH. Other shells behave
similarly, but not identically. If you want to use something else (e.g. ZSH,
TCSH, etc.), please find other resources.

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 29 / 40

Bourne Again Shell Variables

Variables

BASH Variables
▶ Store data
▶ Contain text, for the most part
▶ No type system

Syntax
▶ Assignment/Declaration

▶ variable=value
▶ Referencing

▶ $variable
▶ ${variable}

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 30 / 40

Bourne Again Shell Variables

Variable Scope

Scope
▶ Variables exist inside the shell they’re in
▶ Unless exported

e.g. export EDITOR=vim
▶ This is very important in scripts, particularly the shell startup scripts

(.bashrc, .bash_profile)

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 31 / 40

Bourne Again Shell Variables

Special Variables

$# The number of command line arguments
$0 The name of the script/function called
$1 The first argument to the script/function
$? The return code of the last program run in this shell

$USER The current user
$HOME The user’s home directory

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 32 / 40

Bourne Again Shell Flow Control

Flow Control

if/else

if [var -eq "string"]
then

command
elif [var -eq "string2"]
then

command2
else

command3
fi

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 33 / 40

Bourne Again Shell Flow Control

Flow Control

case

case "$var" in
val)

command
;;
val2)

command
;;
(*)

default
;;

esac

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 34 / 40

Bourne Again Shell Flow Control

Flow Control

for

for file in ./*; do
command $file
command2

done

for ((a=1; a <= LIMIT; a++)) do
command
command2

done

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 35 / 40

Bourne Again Shell Flow Control

Conditionals

Testing
▶ Testing happens in []
▶ String tests are different than arithmetic tests
▶ Generally use -lt, -gt, -le, -ge, -eq, -ne
▶ Tests for files are special, e.g. [-x simv] makes sure that the

binary simv has execution permissions

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 36 / 40

Bourne Again Shell Functions

Functions

Functions
▶ Packages of commands
▶ Arguments are referenced by position
▶ Useful for packaging up commonly reused bits

Syntax

function ()
{

commands
}

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 37 / 40

Bourne Again Shell Globbing

File Globbing

What is globbing?
▶ File name wildcarding in the shell
▶ Expansion is done, and then passed to the command to be executed
▶ e.g. test_progs/*.s

What should I know globbing?
▶ Superior to parsing ls output in every way
▶ Can get more complicated, see this page of the BASH manual.

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 38 / 40

http://www.gnu.org/software/bash/manual/html_node/Pattern-Matching.html#Pattern-Matching

Scripting

Scripting

1. Write a series of shell commands into a text file
2. On the first line of the file, specify an interpreter

e.g. #!/bin/bash
3. Name it something appropriate

e.g. test.sh
4. Add execute permissions

e.g. chmod +x test.sh

5. Run the script
e.g. $./test.sh

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 39 / 40

Assignment

Lab Assignment

▶ Assignment is posted to the course website
▶ If you get stuck. . .

▶ Ask a neighbor, quietly
▶ Put yourself in the help queue

▶ When you finish the assignment, sign up in the help queue and mark
that you would like to be checked off.

▶ If you are unable to finish today, the assignment needs to be checked
off by a GSI by next Friday.

(University of Michigan) Lab 4: Scripting Thursday, 1st February, 2024 40 / 40

https://www.eecs.umich.edu/courses/eecs470/?page=schedule.php
https://oh.eecs.umich.edu/courses/eecs470
https://oh.eecs.umich.edu/courses/eecs470

	Administrivia
	UNIX
	Files
	Utilities
	Connecting Utilities

	Bourne Again Shell
	Variables
	Flow Control
	Functions
	Globbing

	Scripting
	Assignment

