
EECS 470 Lab 5
SystemVerilog

Department of Electrical Engineering and Computer Science
College of Engineering
University of Michigan

Thursday, February 8th, 2024

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 1 / 37

Overview

Administrivia

Motivation

Multidimensional Arrays

Unique and Priority

Assertions

For Loops

Generate Blocks

Lab Assignment

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 2 / 37

Administrivia

Crazy times are here

Homework
▶ HW 3 is due is next Wednesday, February 14th

Exam
▶ Exam is next Thursday, February 15th

Project
▶ Project proposals due Tuesday, February 13th

▶ Group meetings Thursday and Friday, February 15th -16th

▶ Then 3 weeks (one of which is Spring break) until milestone 1
meetings

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 3 / 37

Administrivia

Project 2 Feedback

Implementations + Style
▶ Give every signal a default value in always_comb blocks

▶ Do this before you write anything else
▶ This makes avoiding latches easy

▶ Be very aware of how your Verilog translates to hardware
▶ Ex: If you use “*”, that makes a (very expensive) multiplier

Free Response
▶ Each pipeline stage requires overhead (setup + hold time, wiring)
▶ You should be able to analyze the latency of your module

▶ Understand the latency associated with your design choices
▶ Don’t rely on Verdi to tell you how long something takes to compute

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 4 / 37

Motivation

Motivation

Why SystemVerilog? Why now?
▶ Extra features that will be useful in your projects
▶ Not all features are easy to use: many have a steep learning curve
▶ The goal isn’t to go wild and try to use everything...
▶ Instead, think about which are worthwhile to incorporate

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 5 / 37

Motivation

What is SystemVerilog?

1. 1995 – Verilog HDL
2. 2001 – Verilog 2001
3. 2005 – SystemVerilog

▶ Emphasis on creating a combined Hardware Description Language and
Hardware Verification Language

▶ Ability to debug at the “system” level
▶ Provides the basis for very powerful, object-oriented testbenches
▶ The framework for industry verification tools, e.g. UVM

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 6 / 37

Multidimensional Arrays

Multidimensional Arrays

Example
▶ logic [127:0] [63:0] multi_d_array [3:0];
▶ assign multi_d_array[3][101] = 64’hFFFF_FFFF;

Explanation
▶ “[127:0]” and “[63:0]” are called “packed” dimensions
▶ “[3:0]” is an “unpacked” dimension
▶ When referencing for read/write, unpacked dimensions come first,

then packed dimensions
▶ Related to how the wires get laid out in hardware

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 7 / 37

Multidimensional Arrays

Multidimensional Arrays

Example
▶ logic [127:0] [63:0] multi_d_array [3:0];
▶ assign multi_d_array[3][101] = 64’hFFFF_FFFF;

Explanation
▶ Old Verilog only allows one packed dimension
▶ SystemVerilog allows as many as you need
▶ We recommend packed arrays for most designs

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 8 / 37

Multidimensional Arrays

Multidimensional Arrays

Example
▶ logic [31:0] one_d_array;
▶ logic [15:0] [1:0] two_d_array;
▶ assign two_d_array = one_d_array;

Explanation
▶ Packed arrays are laid out as a contiguous set of bits
▶ Allows easy copying from one array to another

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 9 / 37

Unique and Priority

Unique/priority if/case

input a, b, c;
input [1:0] sel;
output z;
case (sel)

2'b00: z = a;
2'b01: z = b;
2'b10: z = c;

endcase

How will the synthesis tool convert this design to hardware?

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 10 / 37

Unique and Priority

Unique/priority if/case

input a, b, c;
input [1:0] sel;
output z;
case (sel)

2'b00: z = a;
2'b01: z = b;
2'b10: z = c;

endcase

A latch will be generated, since a value for z was not specified when
sel == 2’b11

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 11 / 37

Unique and Priority

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 11 / 37

Unique and Priority

Unique/priority if/case

What if you know sel will never equal 2’b11?
▶ You could add a dummy state, but that adds unnecessary logic and

potentially hides errors
▶ SystemVerilog has a “priority” construct for exactly this problem

▶ Tells synthesis tool not to generate a latch
▶ Checks at run-time that each state is reachable

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 12 / 37

Unique and Priority

Unique/priority if/case

input a, b, c;
input [1:0] sel;
output z;
priority case (sel)

2'b00: z = a;
2'b01: z = b;
2'b10: z = c;

endcase

During behavioral simulation, if sel is 2’b11, a warning will be generated:

RT Warning: No condition matches in priority case statement.

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 13 / 37

Unique and Priority

Unique/priority if/case

Another code example:

input [1:0] sel;
output logic [1:0] z;
if (sel[1])

z = a;
else if (sel[0])

z = b;
else

z = c

What hardware will be generated by this code?

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 14 / 37

Unique and Priority

Unique/priority if/case

Another code example:

input [1:0] sel;
output logic [1:0] z;
if (sel[1])

z = a;
else if (sel[0])

z = b;
else

z = c

Tool will give priority to higher bits, since it assumes multiple bits
could be high?
▶ But what if we’re using one-hot encoding?

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 15 / 37

Unique and Priority

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 15 / 37

Unique and Priority

Unique/priority if/case

SystemVerilog has “unique” if/case statement

input [1:0] sel;
output logic [1:0] z;
unique if (sel[1])

z = a;
else if (sel[0])

z = b;
else

z = c

▶ Tells synthesis tool to assume
one-hot encoding

▶ Ignores priority logic and doesn’t
generate any latches

▶ Generates simulation warning
if multiple bits are high

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 16 / 37

Unique and Priority

Unique/priority if/case

Unique & Priority used for both if and case statements
▶ Replaces “full_case” and “parallel_case” pragmas from old Verilog
▶ Useful for simplifying logic and clarifying design choices

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 17 / 37

Assertions

Assertions

Assertions
▶ Strategy for automated testing: check that certain conditions are true
▶ Statements declaring some kind of invariant
▶ Can be inserted in testbenches or RTL (ignored by synthesis)
▶ Two types:

▶ Immediate: directly called in code
▶ Concurrent: running in background

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 18 / 37

Assertions

Immediate Assertions

Need to check that some expression is true...

adder a1(a, b, c);
initial begin

if ((a+b) != c)
$display("Error!");

end

Better done by immediate assertion...

adder a1(a, b, c);
initial begin

assert ((a+b) == c);
end

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 19 / 37

Assertions

Concurrent Assertions

▶ Idea: Embed invariants about your design in the module itself
▶ Verify your design automatically every clock cycle!

▶ Describe high-level functional correctness of your design...
▶ ...and have simulator check these invariants in the background

▶ Very helpful for documenting your design
▶ Describe what should be true at all times
▶ Lay out sequences of events that should occur

▶ Makes writing a testbench much simpler
▶ SystemVerilog supports an entire assertion language (!)

▶ Very powerful, but can be confusing

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 20 / 37

Assertions

Assertion Syntax Basics

▶ Clocked behavior
▶ @(posedge clock) disable iff(reset) : examine at every

positive clock edge, except if reset is high
▶ clocking cb @(posedge clock) ... endclocking : Everying in this block

should be evaluated at the positive clock edge
▶ Implication

▶ s1 |-> s2: If s1 is true, then s2 must also be true at the same time
▶ s1 |=> s2: If s1 is true, then s2 must also be true the next cycle

▶ Timing windows
▶ (a && b) |-> ##[1:3] c;

▶ If a and b are true, then 1-3 cycles later, c must be true
▶ int x; (a, x=data) ##[1:$] c

▶ when a is true, save data to x and then wait [1,∞) cycles until c

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 21 / 37

Assertions

Assertions

Assertions
▶ For more information on assertions, check out “A Practical Guide to

SystemVerilog Assertions”
▶ An example set of assertions is used to test lab 5. See the source code

for the example

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 22 / 37

https://mirlyn.lib.umich.edu/Record/005702668
https://mirlyn.lib.umich.edu/Record/005702668

For Loops

“For” loops

“You want ‘for’ loops? You can’t handle ‘for’ loops!”
▶ We told you earlier in the semester that “for” loops are not a thing
▶ We lied, sort of... but they don’t work the way they do in software
▶ In software we think about iterations of loops

▶ Iteration 1, then Iteration 2, then Iteration 3... etc...
▶ In hardware, loops need to unroll completely at design time

▶ Self-modifying hardware is still not a thing...
▶ So either everything runs in parallel (good)
▶ Or loop can “break” when a certain condition is true (can get ugly)

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 23 / 37

For Loops

For loops

Does this make sense for actual hardware?
parity = 0;
for (int i=0; i<32; i++) begin

if (in[i])
parity = ~parity;

end

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 24 / 37

For Loops

For loops

Designing synthesizable “for” loops
▶ “For” loops can be valuable, just different than software

▶ Just another way of doing combinational logic, not a replacement for
sequential logic

▶ Very limited ability to change signals referenced in the loop

▶ Great for condensing repetitive code, because everything will be done
in parallel

▶ Visualize how a loop can be built into hardware at synthesis time

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 25 / 37

For Loops

For loops

Blocking assignment in loops
always_comb begin

for (int i=0; i<32; i++)
a = i;

end
▶ What will a equal?
▶ 31, because if we unrolled the loop, the assignment to 31 would be last

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 26 / 37

For Loops

For loops

Break Statements
always_comb begin

for (int i=0; i<32; i++)
a = i;
if (condition[i]) break;

end
▶ Effect: break out of loop once condition is true

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 27 / 37

For Loops

For Loops

wor and wand
▶ For loops lend themselves to another type of wire: wor and wand
▶ Those wire types allow you to do multiple assignments to one signal
▶ The final value will be the logical OR (for wor) or AND (for wand) of

all assignments.

Index Part-Select
▶ “-:" and “+:" are shorthand for selecting based by an index and width
▶ Syntax: signal[<start>+:<width>] or signal[<end>-:<width>]
▶ Example: array[WIDTH*i+:WIDTH] takes the bits from WIDTH*i to

WIDTH*(i+1)-1

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 28 / 37

For Loops

For loops

Max loop iterations
▶ Design Compiler sets a maximum number of loop iterations to prevent

infinite loops
▶ This is configured to be 1024 by default
▶ If you need more, add this line to your .tcl file:

set hdlin_while_loop_iterations (iterations)

Final advice
▶ Remember: don’t use Verilog as a way to avoid thinking about actual

hardware
▶ This results in synthesis problems or overly complex designs

▶ First think about how to build the hardware, then think about the
Verilog constructs that can allow you to describe your design easily

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 29 / 37

Generate Blocks

Generic Designs

Goal: complex designs with a single parameter
▶ Want to make designs where we can easily change certain features

▶ For example, the number of ROB entries

▶ The multiplier in P2 could be modified using parameters
▶ We can build complex designs... remember module arrays?

one_bit_adder add_8 [7:0] (
.a(a), .b(b), .cin({carries, cin}),
.sum(sum), .cout({cout, carries}));

▶ What if we couldn’t condense everything to a single parameter?
▶ An adder is simple, just an array of smaller adders
▶ What about more complex structures like the priority selectors from P1

that are trees of smaller selectors?

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 30 / 37

Generate Blocks

Generate Blocks

Generate blocks give control
▶ Using a generate block to build hardware:

generate
genvar i;
for (i=0; i<N; i++) begin

one_bit_adder add_8 (
.a (a[i]),
.b (b[i]),
.cin (carries[i]),
.sum (sum[i]),
.cout(carries[i+1]));

end
endgenerate

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 31 / 37

Generate Blocks

Generic Designs

Goal: complex designs with a single parameter
▶ How does this work?

▶ The tool will “elaborate” the design
▶ Evaluate “if” statements and unroll “for” loops

▶ Important: all conditions must be deterministic at compile time

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 32 / 37

Generate Blocks

Generate Blocks

Another example: the Priority selectors from P1:

generate
genvar i;
for (i=0; i<N; i++) begin

localparam left_right = i[0];

ps2 ps_i (
.req (sub_reqs[i]),
.en (sub_gnts[i/2][left_right])
.gnt (sub_gnts[i]),
.req_up (sub_reqs[i/2][left_right]));

end
endgenerate

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 33 / 37

Lab Assignment

Lab Tips

▶ Circular Buffers aka FIFOs are used all over the place in HW design
▶ Any time you need to buffer data from source to destination
▶ Storing stalled requests until hazards are resolved
▶ Also a very common interview question

▶ Goal: design a generic FIFO that you can reuse in your final project
▶ Key parameters:

▶ Depth: how many entries are in the FIFO
▶ Width: # bits in each entry
▶ Alert depth: when to send an alert that the buffer is almost full

▶ Nuances:
▶ Head and tail need to wrap around ("circular" buffer)
▶ How do you track empty, full, and almost full?

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 34 / 37

Lab Assignment

Lab Diagram

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 35 / 37

Lab Assignment

Design Decisions

▶ One-hot vs encoded read/write pointers:
▶ Encoded is more space efficient and easier to read/use
▶ One-hot is faster (addition is just a shift) but requires more area

▶ Options for differentiating empty and full states:
▶ Keep a separate count for number of entries
▶ Track which entries are valid or not
▶ Have one extra bit for full vs empty
▶ Make it so you always have at least one empty slot

▶ How do you drive the read data?
▶ Does this need to be combinational or sequential?
▶ Does it need to be 0 when data is invalid?

▶ What if you need to do multiple reads and writes per cycle?
▶ This isn’t part of the lab, but may be needed for superscalar processors

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 36 / 37

Lab Assignment

Lab Assignment

▶ Assignment is posted to the course website as Lab 5 Assignment.
▶ NOTE: we are giving you two weeks for this one because it is more

challenging
▶ If you get stuck. . .

▶ Ask a neighbor, quietly
▶ Put yourself in the help queue

▶ When you finish the assignment, sign up in the help queue and mark
that you would like to be checked off.

▶ If you are unable to finish today, the assignment needs to be checked
off by a GSI/IA in office hours before the end of next week.

(University of Michigan) Lab 5: SystemVerilog Thursday, February 8th, 2024 37 / 37

http://www.eecs.umich.edu/courses/eecs470/labs/lab5_assignment.pdf
https://oh.eecs.umich.edu/courses/eecs470
https://oh.eecs.umich.edu/courses/eecs470

	Administrivia
	Motivation
	Multidimensional Arrays
	Unique and Priority
	Assertions
	For Loops
	Generate Blocks
	Lab Assignment

