EECS 470 Lab 6
Final Project Memory & Caches

Department of Electrical Engineering and Computer Science
College of Engineering
University of Michigan

Thursday, February 22" 2024

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 1/33

Overview

Project

Project Details
Disclaimer
Memory

Union

[-Cache Controller

Prefetching

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 2/33

Project time is here

Project

> Milestone 1 is due Tuesday, March 5t (2-3 school days!)
» At least one module written and debugged
» Should have at least one other partially written
» Deliverables: 1-page progress report and your module plus testbench

» Submission: Gradescope for report, autograder will be released soon

» We'll grade manually by adding bugs to your module and running the
testbench

» Testbench should print “@@@ Passed’ or "@@@ Failed'.

» Milestone 2 due Thursday, March 28t"

» Run mult_no_lsq.s with an instruction cache.

» Another 1-page progress report, with a top level architectural diagram

> Past experience suggests it takes 7-10 days to wire your pipeline
together and debug after writing all individual modules

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 3/33

Project Specifics/Rules

Cache Size Restriction
> 256 bytes (32 x 8 bytes) of data in the instruction cache

» 256 bytes of data in the data cache.
» One victim cache of four 8-byte blocks (32 bytes of data).

» Does not include whatever metadata you need for each block
> LRU bits, valid bits, tag bits, etc...
> Levels the playing field for everyone, and avoids long synthesis times

Number of CDBs can be at most number of ways you are superscalar

» Why? Design Compiler doesn’t punish you as much as it should

» You will need to schedule or stall functional units

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 4/33

Disclaimer

Memory and Caches

Disclaimer
> What follows is recommendations from current and prior course staff
» Better performance with different choices may be possible
» The goal isn't to try to use everything...

» Instead, think about what is worthwhile to incorporate in your project

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 5/33

Memory

Memory

» System memory is non-synthesizable
» Instantiated in mem.sv in test/ directory
» You cannot change memory in the final project

> Keep in mind that although the address space is 32 bits, we only have
64 KiB of memory (16 bits worth of address space)

> Memory responds at neg-edge of the clock

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 6/33

Memory

Wait, what is a memory “tag’'?

» (Different from cache definition of “tag”)

> Tag is a transaction number: like a valet service or shipping a package
» You order something online and get a tracking number

> Tells you the order has been processed

> Gives you a handle to sort through your mail
» Why not just use the address?

> Many addresses could be reading one after the other

i.e. Load 0x1000, Store 0x1000, Load 0x1000
> Without tags the third instruction would get the first’s datal

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 7/33

Memory

Memory Interface

Memory Interface

module mem (
input clk, // Memory clock

input ADDR proc2mem_addr, // address of current comman
input MEM_BLOCK proc2mem_data, // data of current command
input [1:0] proc2mem_command, // MEM_{NONE,LOAD,STORE}

// Memory tag for current transaction (0 = can't accept)
output MEM_TAG mem2proc_transaction_tag,
// data for a load
output MEM_BLOCK mem2proc_data,
// 0 = no value, other = tag of finished transaction
output MEM_TAG mem2proc_data_tag,
)

Thursday, February 22"“, 2024
(University of Michigan) Lab 6: Memory and Caches 8/33

Memory

Memory Interface

Memory Internal Signals

// This format is needed for Verilog's $readmemh() function
logic [63:0] unified_memory ["MEM_64BIT_LINES-1:0];

MEM_BLOCK next_mem2proc_data;
MEM_TAG next_mem2proc_transaction_tag,
next_mem2proc_data_tag;

wire [31:3] block_addr = proc2mem_addr[31:3];
wire [2:0] byte_addr = proc2mem_addr[2:0];

logic [63:0] loaded_data [*NUM_MEM_TAGS:1];
logic [15:0] cycles_left [*NUM_MEM_TAGS:1];
logic waiting_for_bus [NUM_MEM_TAGS:1];

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 9/33

Memory Interface

Memory Macros

» “MEM_LATENCY_IN_CYCLES

> Memory latency is fixed to 100ns for every group
» That means this macro will have a different value for each group
> We will test default value, but you should test other latencies

> “NUM_MEM_TAGS

» No. of outstanding requests that the memory can handle
> We will be testing your processor with the value set to 15

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 10/33

Memory Interface

Memory Output

> Response (mem2proc_transaction_tag)
» Slot number in which the memory has accommodated the request
» Can be between 0 and 15 (inclusive)
> ‘0’ is a special case and means that request has been rejected
» Issued max amount of outstanding requests
» Invalid address
» No request (command) was made

» Tag (mem2proc_data_tag)

> Appears on the bus with the data for a load request

» Slot no. in which the request had been accommodated
» Can be between 0 and 15

> ‘0" means the data on the bus is invalid (X's)

> Non-zero means the data is valid

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 11/33

Memory Interface

Memory Output

» Why do we need a tag anyway?
» Memory latency is non-zero

» Want to pipeline more than one request at a time

» This is called a non-blocking controller

» Need to know when a particular request has been fulfilled
» Memory arbiter

» Up to three things may be contending for the memory
» I-cache, D-cache and Prefetcher
> Need to route requests to the right structure

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 12/33

Memory

Important Tidbits

» You can change what you do with memory
> e.g. pipeline requests, prefetch addresses, novel caching techniques
» But not how the memory actually works

> No modifying the memory module

» No modifying the memory bus to handle more requests or wider
requests

> Remember, mem data will be X's except after a MEM_LOAD

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 13 /33

More data types???

» So we covered structs before and you should be using them already

v

There is a "dual" of that - union

» Just like its origin in C, a SystemVerilog union allows a single piece of
storage to be represented different ways using different named member
types

» "In type theory, a struct is the product type of all its members,

whereas a union is the sum type" - my buddy Pranav

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 14 /33

Union

Union example

In a simple example, we have a representation of a 64 bit cache block

// A memory or cache block
typedef union packed {
logic [7:0][7:0] byte_level;
logic [3:0][15:0] half_level;
logic [1:0][31:0] word_level;
logic [63:0] dbbl_level;
} MEM_BLOCK;
MEM_BLOCK block;
always_comb begin
block.dbbl_level = 64'hfacefacefaceface; // the full block
block.word_level[1] = 32'd420; //write to the upper half
block.byte_level[2] = 8'd42; //write only one byte

end

Thursday, February 22""", 2024

(University of Michigan) Lab 6: Memory and Caches 15 /33

Union

Another example

Now let's say you want to break down addressing for different caches

typedef struct packed {

logic [17:0] tag;

logic [10:0] block_num;

logic [2:0] block_offset;
} DMAP_ADDR; // breakdown for a direct-mapped cache
typedef struct packed {

logic [19:0] tag;

logic [7:0] set_index;

logic [2:0] block_offset;
} SASS_ADDR; // breakdown for a set associative cache
typedef union packed {

DMAP_ADDR d; // for direct mapped

SASS_ADDR s; // for set associative
} CACHE_ADDR; // mow we can use a common data type!

Thursday, February 22"“, 2024
(University of Michigan) Lab 6: Memory and Caches 16 /33

I-Cache Controller

I-Cache Controller Piece by Piece

[-Cache Controller Interface

assign {current_tag, current_index} = proc2Icache_addr[15:3];
output logic [4:0] last_index,
output logic [7:0] last_tag,

» The instruction cache is direct mapped with 32 lines

» Memory consists of 8192 lines

> The index is therefore 5 bits and the block offset is 3 bits
» Every cycle last _index/tag <= current index/tag

> “current” signals come from Fetch
> “last” registers used as write index/tag for |-Cache

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 17 /33

I-Cache Controller

I-Cache Controller Piece by Piece

Fetch Memory Load

wire changed_addr

(current_index'!'=last_index)
|| (current_tag!=last_tag);

» Anytime the address changed in fetch, changed addr will go high
> Cycle 12 here, so memory request issued in cycle 13

Cycle:
10:
11:
12:
13:
14:

4:
8:add

IF

or

4.
8:ad

ID

or

EX

| |
[
I
-
d | 4:or |
| |

8:add

MEM

|
|
-
-:- | -:- LOAD[4]
I LOAD[8]
|

4:o0r

Note: this means that the icache takes one more cycle than the basic p3
fetch stage when it starts up

(University of Michigan)

Lab 6: Memory and Caches

Thursday, February 22"d, 2024
18/33

I-Cache Controller Piece by Piece

Hit in cache
assign Icache_data_out = icache_datalcurrent_index].data;
assign Icache_valid_out = icache_datalcurrent_index].valid &&

(icache_datal[current_index].tags == current_tag);

» This is just the data and valid cache line bit from the cache
> It is ready every cycle and never needs to wait

» These outputs go to Fetch

» Data to Fetch does not come from memory directly!

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 19/33

I-Cache Controller

I-Cache Controller Piece by Piece

Unanswered miss

wire unanswered_miss = changed_addr 7 !Icache_valid_out
miss_outstanding & (Imem2proc_transaction_tag==0);

» Checked the cache and the value came back invalid

» Now | will have to go to memory to get the data
» Or | sent a request to memory and it hasn't been accepted yet

» miss outstanding is just the stored value of unanswered miss
> Either | missed in the cache last cycle, or memory didn't accept request

Cycle: | IF | ID | EX | MEM | WB
11: | 4:or | -:- | -:- [-:- | -:-
12: | 8:add | 4:or | -:- | -:- | -:-
13: | -:- | 8:add | 4:or | -:- | -:- LOAD
14: | -:- | -:- | 8:add | 4:or | -:-

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 20/33

I-Cache Controller Piece by Piece

Unanswered miss

assign proc2Imem_command = (miss_outstanding && !changed_addr)
? MEM_LOAD : MEM_NONE,;
{proc2Icache_addr[31:3],3'b0};

assign proc2Imem_addr

» proc2Imem_addr just cuts off the block offset bits
» proc2Imem_command will issue a Mem Load

> If missed in the cache last cycle or a previous request wasn't accepted.
> If request is accepted, miss_outstanding will be cleared.

> Looks at “!changed_addr” because this indicates fetch PC changed
» If this happened, need to work on new request instead

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 21/33

I-Cache Controller

I-Cache Controller Piece by Piece

Tracking Tags

wire update_mem_tag = changed_addr || miss_outstanding
|| got_mem_data;

» Once you send a MEM_LOAD the memory will respond with a ID
number on the negative edge

» Need to hold onto this ID for your transaction (current_mem_tag)
» When miss_outstanding is high, grab the ID number

» So that you can look for it when the memory broadcasts the value
» When got_mem_data is high, you want to clear the ID number

» So you don't grab a new value with the same ID number
» When changed_addr is high, clear the ID number

» You don't care about the access anymore

» Usually because a branch occurred

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 22/33

I-Cache Controller

I-Cache Controller Piece by Piece

Tracking Tags

Cycle:| IF | 1ID | EX |
47 : | 28:bne | 28:- | 28:- |
43: | 32: | 28:bne | 28:- |
49: | 32:- | 32:- | 28:bne |
50: | 32:- | 32:- | 32:- |
51: | 8:- | 32:- | 32:- |
52: | 8:b1lt | 8:- | 32:- |

MEM

28:
28:
28:
28:
32:
32:

» Clear ID number when changed_addr is high

| WB
| 28:
| 28:
| 28:
| 28:
|

|

28

- LOAD[32]

:bne
32:

> |t's safe to clear on that cycle because the old request isn't needed

» A new memory request doesn't launch until next cycle
> changed_addr would assert on cycle 51, so ID for request gets cleared

(University of Michigan) Lab 6: Memory and Caches

Thursday, February 22""", 2024

23/33

I-Cache Controller

I-Cache Controller Piece by Piece

Tag Comes Back

assign got_mem_data = (current_mem_tag==Imem2proc_data_tag)
&& (current_mem_tag!=0);

» got_mem_data enables writing to the I-Cache when the tag that is on
the memory bus matches the current outstanding request tag
» The write index/tag is the index you sent off to the memory
> Stored as current_tag

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 24 /33

I-Cache Controller

I-Cache Controller Piece by Piece

Design Choices

» Don't necessarily need to use changed_addr
» Could have IF send “read_valid" signal
» Could use a wr_idx instead of last_idx
> Gets set when you send off a MEM_LOAD
» Controller waits one cycle after cache miss to send to memory

> Can probably be done in one cycle
» But you have to handle the cache lookup in half a cycle

» Prefetching will drastically increase performance
P> Make sure you can handle reads and writes in the same cycle

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 25/33

D-Cache Controller

D-Cache Controller
» Have the D-Cache take priority over the I-Cache in every case
> Stall the Fetch stage like P3 if this happens
» Maybe change priority based on current ROB size
» Similar to the I-Cache controller except now the controller can store to
the cache along with memory

P> Loads are handled the same as the |-Cache

> Stores now store to the Cache and the Memory (unless WB D$)
» If the response is non-zero, assume the store completes
» But will still take up an ID for the entire memory access time

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 26 /33

D-Cache Controller

Non-blocking Cache

» Can work on other requests while waiting for memory to supply misses
» Miss Status Handling Registers (MSHRs) help in tracking the misses

> Basically a table of tag, address, and data values that are waiting
» A lot in common with a reservation station

> Need to match tag of incoming data to the proper load in the table
> May be able to simplify since mem. sv services requests in-order...

» Increases complexity (but also performance!)

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 27/33

Non-blocking Caches

Non-blocking Caches

» For the D-Cache: have multiple independent memory operations

» Want to be able to service another if one misses in cache
> Will likely evict useful instructions for useless ones

> Basic idea: Use MSHRs to keep track of requests
» Hard part is the implementation...
» Figuring out when a request can go
» Depends on forwarding/speculative logic from lecture

> Updating and ordering requests
» Once you launch a store, it's gone

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 28 /33

Stores

Wait, what about stores?

> Stores are registered in the memory in the same way
Need the same number of cycles as loads

>
> If the response is 0, it means the store has not launched
>

Memory requests are never reordered
Take a minute to convince yourself this is the case...

» Do we need to track stores in MSHRs?

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 29/33

Prefetching

Prefetching

> |dea: on a miss, grab more than just the current block

» Probably best to stick with prefetching for just I-Cache, not D-Cache

» More complicated issues the more you prefetch...
» Suppose you prefetch two lines ahead of a taken branch
> Best case: The two lines you prefetched are no longer needed
> Worst case: you evict instructions you need from your I-Cache
» Need to track multiple outstanding requests to memory
Don't want to issue requests for lines that are already valid in the cache
Watch out for the interleaving of prefetched data and D-Cache data
» Don't want to slow down the D-Cache

vy

> May run out of memory bandwidth
P> What to do when Fetch requests something else in the middle of
waiting for the previous miss to come back?

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 30/33

Prefetching

Main algorithm (after miss observed)

> Issue request for missed line, store address and memory response, start
prefetch FSM

» For as many cycles as we want to prefetch...
» Increment prefetch address to next line
> See if that line is valid in the cache

» If not, store address somewhere to be requested later
» When should you stop?

» If you hit a valid line?
» Fetch requests something else? (branch mispredicted)
» D-Cache needs access to bus?

» Recommend having a second read port on |-Cache for prefetcher to use

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 31/33

Prefetching

Tracking Requests

» Keep buffer of requests in cache controller (MSHRs)

> Allocate entry on cache miss and we wish to prefetch
> Store address (so we know where to write into cache)
» Mark entry as wanting to send request

> Look for entries wanting to send request
» Send request to memory with entry's stored address
> Store mem2proc_transaction tag back in entry
» Mark entry as having sent a request

» When data comes back from memory
» Compare mem2proc_data_tag with stored responses from all valid

buffer entries

> Get {tag,index} from stored address for writing into the cache
» De-allocate entry

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 32/33

Prefetching

Prefetching |deas

» Conservative strategy: Grab next block on miss

» Helps quite a bit: half of all instructions are prefetched
» Greedy strategy: march through memory

> Will likely evict useful instructions for useless ones
» Move prefetch pointer on branch

» Predict taken? Or not taken? Or both?
» Branch predictor information could be helpful to decide

Thursday, February 22"d, 2024

(University of Michigan) Lab 6: Memory and Caches 33/33

	Project
	Project Details
	Disclaimer
	Memory
	Union
	I-Cache Controller
	Prefetching

