
EECS 470 Lab 6
Final Project Memory & Caches

Department of Electrical Engineering and Computer Science
College of Engineering
University of Michigan

Thursday, February 22nd, 2024

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

1 / 33

Overview

Project

Project Details

Disclaimer

Memory

Union

I-Cache Controller

Prefetching

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

2 / 33

Project

Project time is here

Project
▶ Milestone 1 is due Tuesday, March 5th (2-3 school days!)

▶ At least one module written and debugged
▶ Should have at least one other partially written

▶ Deliverables: 1-page progress report and your module plus testbench
▶ Submission: Gradescope for report, autograder will be released soon
▶ We’ll grade manually by adding bugs to your module and running the

testbench
▶ Testbench should print “@@@ Passed” or “@@@ Failed”.

▶ Milestone 2 due Thursday, March 28th

▶ Run mult_no_lsq.s with an instruction cache.
▶ Another 1-page progress report, with a top level architectural diagram
▶ Past experience suggests it takes 7-10 days to wire your pipeline

together and debug after writing all individual modules

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

3 / 33

Project Details

Project Specifics/Rules

Cache Size Restriction
▶ 256 bytes (32 x 8 bytes) of data in the instruction cache
▶ 256 bytes of data in the data cache.
▶ One victim cache of four 8-byte blocks (32 bytes of data).

▶ Does not include whatever metadata you need for each block
▶ LRU bits, valid bits, tag bits, etc...
▶ Levels the playing field for everyone, and avoids long synthesis times

Number of CDBs can be at most number of ways you are superscalar
▶ Why? Design Compiler doesn’t punish you as much as it should
▶ You will need to schedule or stall functional units

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

4 / 33

Disclaimer

Memory and Caches

Disclaimer
▶ What follows is recommendations from current and prior course staff
▶ Better performance with different choices may be possible
▶ The goal isn’t to try to use everything...
▶ Instead, think about what is worthwhile to incorporate in your project

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

5 / 33

Memory

Memory

Memory
▶ System memory is non-synthesizable
▶ Instantiated in mem.sv in test/ directory
▶ You cannot change memory in the final project
▶ Keep in mind that although the address space is 32 bits, we only have

64 KiB of memory (16 bits worth of address space)
▶ Memory responds at neg-edge of the clock

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

6 / 33

Memory

Memory

Wait, what is a memory “tag”?
▶ (Different from cache definition of “tag”)
▶ Tag is a transaction number: like a valet service or shipping a package
▶ You order something online and get a tracking number

▶ Tells you the order has been processed
▶ Gives you a handle to sort through your mail

▶ Why not just use the address?
▶ Many addresses could be reading one after the other

i.e. Load 0x1000, Store 0x1000, Load 0x1000
▶ Without tags the third instruction would get the first’s data!

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

7 / 33

Memory

Memory Interface

Memory Interface

module mem (
input clk, // Memory clock
input ADDR proc2mem_addr, // address of current command
input MEM_BLOCK proc2mem_data, // data of current command
input [1:0] proc2mem_command, // MEM_{NONE,LOAD,STORE}

// Memory tag for current transaction (0 = can't accept)
output MEM_TAG mem2proc_transaction_tag,
// data for a load

output MEM_BLOCK mem2proc_data,
// 0 = no value, other = tag of finished transaction

output MEM_TAG mem2proc_data_tag,
);

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

8 / 33

Memory

Memory Interface

Memory Internal Signals

// This format is needed for Verilog's $readmemh() function
logic [63:0] unified_memory [`MEM_64BIT_LINES-1:0];

MEM_BLOCK next_mem2proc_data;
MEM_TAG next_mem2proc_transaction_tag,

next_mem2proc_data_tag;

wire [31:3] block_addr = proc2mem_addr[31:3];
wire [2:0] byte_addr = proc2mem_addr[2:0];

logic [63:0] loaded_data [`NUM_MEM_TAGS:1];
logic [15:0] cycles_left [`NUM_MEM_TAGS:1];
logic waiting_for_bus [`NUM_MEM_TAGS:1];

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

9 / 33

Memory

Memory Interface

Memory Macros
▶ `MEM_LATENCY_IN_CYCLES

▶ Memory latency is fixed to 100ns for every group
▶ That means this macro will have a different value for each group
▶ We will test default value, but you should test other latencies

▶ `NUM_MEM_TAGS
▶ No. of outstanding requests that the memory can handle
▶ We will be testing your processor with the value set to 15

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

10 / 33

Memory

Memory Interface

Memory Output
▶ Response (mem2proc_transaction_tag)

▶ Slot number in which the memory has accommodated the request
▶ Can be between 0 and 15 (inclusive)
▶ ‘0’ is a special case and means that request has been rejected

▶ Issued max amount of outstanding requests
▶ Invalid address
▶ No request (command) was made

▶ Tag (mem2proc_data_tag)
▶ Appears on the bus with the data for a load request
▶ Slot no. in which the request had been accommodated
▶ Can be between 0 and 15
▶ ‘0’ means the data on the bus is invalid (X’s)
▶ Non-zero means the data is valid

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

11 / 33

Memory

Memory Interface

Memory Output
▶ Why do we need a tag anyway?

▶ Memory latency is non-zero
▶ Want to pipeline more than one request at a time
▶ This is called a non-blocking controller
▶ Need to know when a particular request has been fulfilled

▶ Memory arbiter
▶ Up to three things may be contending for the memory
▶ I-cache, D-cache and Prefetcher
▶ Need to route requests to the right structure

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

12 / 33

Memory

Memory

Important Tidbits
▶ You can change what you do with memory

▶ e.g. pipeline requests, prefetch addresses, novel caching techniques
▶ But not how the memory actually works

▶ No modifying the memory module
▶ No modifying the memory bus to handle more requests or wider

requests

▶ Remember, mem data will be X’s except after a MEM_LOAD

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

13 / 33

Union

More data types???

▶ So we covered structs before and you should be using them already
▶ There is a "dual" of that - union
▶ Just like its origin in C, a SystemVerilog union allows a single piece of

storage to be represented different ways using different named member
types

▶ "In type theory, a struct is the product type of all its members,
whereas a union is the sum type" - my buddy Pranav

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

14 / 33

Union

Union example

In a simple example, we have a representation of a 64 bit cache block
// A memory or cache block
typedef union packed {

logic [7:0][7:0] byte_level;
logic [3:0][15:0] half_level;
logic [1:0][31:0] word_level;
logic [63:0] dbbl_level;

} MEM_BLOCK;
MEM_BLOCK block;
always_comb begin

block.dbbl_level = 64'hfacefacefaceface; // the full block
block.word_level[1] = 32'd420; //write to the upper half
block.byte_level[2] = 8'd42; //write only one byte

end

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

15 / 33

Union

Another example

Now let’s say you want to break down addressing for different caches
typedef struct packed {

logic [17:0] tag;
logic [10:0] block_num;
logic [2:0] block_offset;

} DMAP_ADDR; // breakdown for a direct-mapped cache
typedef struct packed {

logic [19:0] tag;
logic [7:0] set_index;
logic [2:0] block_offset;

} SASS_ADDR; // breakdown for a set associative cache
typedef union packed {

DMAP_ADDR d; // for direct mapped
SASS_ADDR s; // for set associative

} CACHE_ADDR; // now we can use a common data type!

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

16 / 33

I-Cache Controller

I-Cache Controller Piece by Piece

I-Cache Controller Interface
assign {current_tag, current_index} = proc2Icache_addr[15:3];
output logic [4:0] last_index,
output logic [7:0] last_tag,

▶ The instruction cache is direct mapped with 32 lines
▶ Memory consists of 8192 lines
▶ The index is therefore 5 bits and the block offset is 3 bits
▶ Every cycle last_index/tag <= current_index/tag

▶ “current” signals come from Fetch
▶ “last” registers used as write index/tag for I-Cache

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

17 / 33

I-Cache Controller

I-Cache Controller Piece by Piece

Fetch Memory Load

wire changed_addr = (current_index!=last_index)
|| (current_tag!=last_tag);

▶ Anytime the address changed in fetch, changed_addr will go high
▶ Cycle 12 here, so memory request issued in cycle 13

Cycle: | IF | ID | EX | MEM | WB
10: | -:- | -:- | -:- | -:- | -:-
11: | 4:or | -:- | -:- | -:- | -:-
12: | 8:add | 4:or | -:- | -:- | -:- LOAD[4]
13: | -:- | 8:add | 4:or | -:- | -:- LOAD[8]
14: | -:- | -:- | 8:add | 4:or | -:-

Note: this means that the icache takes one more cycle than the basic p3
fetch stage when it starts up

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

18 / 33

I-Cache Controller

I-Cache Controller Piece by Piece

Hit in cache
assign Icache_data_out = icache_data[current_index].data;
assign Icache_valid_out = icache_data[current_index].valid &&

(icache_data[current_index].tags == current_tag);

▶ This is just the data and valid cache line bit from the cache
▶ It is ready every cycle and never needs to wait

▶ These outputs go to Fetch
▶ Data to Fetch does not come from memory directly!

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

19 / 33

I-Cache Controller

I-Cache Controller Piece by Piece

Unanswered miss
wire unanswered_miss = changed_addr ? !Icache_valid_out :

miss_outstanding & (Imem2proc_transaction_tag==0);

▶ Checked the cache and the value came back invalid
▶ Now I will have to go to memory to get the data
▶ Or I sent a request to memory and it hasn’t been accepted yet

▶ miss_outstanding is just the stored value of unanswered miss
▶ Either I missed in the cache last cycle, or memory didn’t accept request

Cycle: | IF | ID | EX | MEM | WB
11: | 4:or | -:- | -:- | -:- | -:-
12: | 8:add | 4:or | -:- | -:- | -:-
13: | -:- | 8:add | 4:or | -:- | -:- LOAD
14: | -:- | -:- | 8:add | 4:or | -:-

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

20 / 33

I-Cache Controller

I-Cache Controller Piece by Piece

Unanswered miss
assign proc2Imem_command = (miss_outstanding && !changed_addr)

? MEM_LOAD : MEM_NONE;
assign proc2Imem_addr = {proc2Icache_addr[31:3],3'b0};

▶ proc2Imem_addr just cuts off the block offset bits
▶ proc2Imem_command will issue a Mem Load

▶ If missed in the cache last cycle or a previous request wasn’t accepted.
▶ If request is accepted, miss_outstanding will be cleared.

▶ Looks at “!changed_addr” because this indicates fetch PC changed
▶ If this happened, need to work on new request instead

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

21 / 33

I-Cache Controller

I-Cache Controller Piece by Piece

Tracking Tags

wire update_mem_tag = changed_addr || miss_outstanding
|| got_mem_data;

▶ Once you send a MEM_LOAD the memory will respond with a ID
number on the negative edge

▶ Need to hold onto this ID for your transaction (current_mem_tag)
▶ When miss_outstanding is high, grab the ID number

▶ So that you can look for it when the memory broadcasts the value
▶ When got_mem_data is high, you want to clear the ID number

▶ So you don’t grab a new value with the same ID number
▶ When changed_addr is high, clear the ID number

▶ You don’t care about the access anymore
▶ Usually because a branch occurred

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

22 / 33

I-Cache Controller

I-Cache Controller Piece by Piece

Tracking Tags

Cycle:| IF | ID | EX | MEM | WB
47: | 28:bne | 28:- | 28:- | 28:- | 28:-
48: | 32: | 28:bne | 28:- | 28:- | 28:-
49: | 32:- | 32:- | 28:bne | 28:- | 28:- LOAD[32]
50: | 32:- | 32:- | 32:- | 28:bne | 28:-
51: | 8:- | 32:- | 32:- | 32: | 28:bne
52: | 8:blt | 8:- | 32:- | 32:- | 32:

▶ Clear ID number when changed_addr is high
▶ It’s safe to clear on that cycle because the old request isn’t needed
▶ A new memory request doesn’t launch until next cycle

▶ changed_addr would assert on cycle 51, so ID for request gets cleared

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

23 / 33

I-Cache Controller

I-Cache Controller Piece by Piece

Tag Comes Back

assign got_mem_data = (current_mem_tag==Imem2proc_data_tag)
&& (current_mem_tag!=0);

▶ got_mem_data enables writing to the I-Cache when the tag that is on
the memory bus matches the current outstanding request tag

▶ The write index/tag is the index you sent off to the memory
▶ Stored as current_tag

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

24 / 33

I-Cache Controller

I-Cache Controller Piece by Piece

Design Choices
▶ Don’t necessarily need to use changed_addr

▶ Could have IF send “read_valid” signal
▶ Could use a wr_idx instead of last_idx

▶ Gets set when you send off a MEM_LOAD
▶ Controller waits one cycle after cache miss to send to memory

▶ Can probably be done in one cycle
▶ But you have to handle the cache lookup in half a cycle

▶ Prefetching will drastically increase performance
▶ Make sure you can handle reads and writes in the same cycle

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

25 / 33

I-Cache Controller

D-Cache Controller

D-Cache Controller
▶ Have the D-Cache take priority over the I-Cache in every case

▶ Stall the Fetch stage like P3 if this happens
▶ Maybe change priority based on current ROB size

▶ Similar to the I-Cache controller except now the controller can store to
the cache along with memory
▶ Loads are handled the same as the I-Cache
▶ Stores now store to the Cache and the Memory (unless WB D$)

▶ If the response is non-zero, assume the store completes
▶ But will still take up an ID for the entire memory access time

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

26 / 33

I-Cache Controller

D-Cache Controller

Non-blocking Cache
▶ Can work on other requests while waiting for memory to supply misses
▶ Miss Status Handling Registers (MSHRs) help in tracking the misses

▶ Basically a table of tag, address, and data values that are waiting
▶ A lot in common with a reservation station

▶ Need to match tag of incoming data to the proper load in the table
▶ May be able to simplify since mem.sv services requests in-order...

▶ Increases complexity (but also performance!)

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

27 / 33

I-Cache Controller

Non-blocking Caches

Non-blocking Caches
▶ For the D-Cache: have multiple independent memory operations

▶ Want to be able to service another if one misses in cache
▶ Will likely evict useful instructions for useless ones

▶ Basic idea: Use MSHRs to keep track of requests
▶ Hard part is the implementation...

▶ Figuring out when a request can go
▶ Depends on forwarding/speculative logic from lecture

▶ Updating and ordering requests
▶ Once you launch a store, it’s gone

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

28 / 33

I-Cache Controller

Stores

Wait, what about stores?
▶ Stores are registered in the memory in the same way
▶ Need the same number of cycles as loads
▶ If the response is 0, it means the store has not launched
▶ Memory requests are never reordered

Take a minute to convince yourself this is the case...

▶ Do we need to track stores in MSHRs?

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

29 / 33

Prefetching

Prefetching

Prefetching
▶ Idea: on a miss, grab more than just the current block
▶ Probably best to stick with prefetching for just I-Cache, not D-Cache
▶ More complicated issues the more you prefetch...

▶ Suppose you prefetch two lines ahead of a taken branch
▶ Best case: The two lines you prefetched are no longer needed
▶ Worst case: you evict instructions you need from your I-Cache

▶ Need to track multiple outstanding requests to memory
▶ Don’t want to issue requests for lines that are already valid in the cache
▶ Watch out for the interleaving of prefetched data and D-Cache data

▶ Don’t want to slow down the D-Cache
▶ May run out of memory bandwidth
▶ What to do when Fetch requests something else in the middle of

waiting for the previous miss to come back?

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

30 / 33

Prefetching

Prefetching

Main algorithm (after miss observed)
▶ Issue request for missed line, store address and memory response, start

prefetch FSM
▶ For as many cycles as we want to prefetch...

▶ Increment prefetch address to next line
▶ See if that line is valid in the cache
▶ If not, store address somewhere to be requested later
▶ When should you stop?

▶ If you hit a valid line?
▶ Fetch requests something else? (branch mispredicted)
▶ D-Cache needs access to bus?

▶ Recommend having a second read port on I-Cache for prefetcher to use

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

31 / 33

Prefetching

Prefetching

Tracking Requests
▶ Keep buffer of requests in cache controller (MSHRs)

▶ Allocate entry on cache miss and we wish to prefetch
▶ Store address (so we know where to write into cache)
▶ Mark entry as wanting to send request

▶ Look for entries wanting to send request
▶ Send request to memory with entry’s stored address
▶ Store mem2proc_transaction_tag back in entry
▶ Mark entry as having sent a request

▶ When data comes back from memory
▶ Compare mem2proc_data_tag with stored responses from all valid

buffer entries
▶ Get {tag,index} from stored address for writing into the cache
▶ De-allocate entry

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

32 / 33

Prefetching

Prefetching

Prefetching Ideas
▶ Conservative strategy: Grab next block on miss

▶ Helps quite a bit: half of all instructions are prefetched
▶ Greedy strategy: march through memory

▶ Will likely evict useful instructions for useless ones
▶ Move prefetch pointer on branch

▶ Predict taken? Or not taken? Or both?
▶ Branch predictor information could be helpful to decide

(University of Michigan) Lab 6: Memory and Caches
Thursday, February 22nd, 2024

33 / 33

	Project
	Project Details
	Disclaimer
	Memory
	Union
	I-Cache Controller
	Prefetching

