EECS 470 Lab 7
LSQ Tips

Department of Electrical Engineering and Computer Science
College of Engineering
University of Michigan

Thursday, March 215, 2024

(University of Michigan) Lab 7: LSQ Guide Thursday, March 21%t 2024 1 /17

Overview

Administrative

Motivation

Options

Summary

(University of Michigan) Lab 7: LSQ Guide Thursday, March 215t 2024 2/17

Administrative

Project Deadlines

Project
» Milestone 2 due Thursday, March 28t"

» Goal: everything except memory working

» Run mult_no_lsq.s and have correct .wb output

> Another 1-page progress report, with a top level architectural diagram

> Past experience suggests it takes 7-10 days to wire your pipeline
together and debug after writing all individual modules

» Milestone 3 due Thursday, April 11th

> Short report on your progress
» Optional meeting depending on project status

(University of Michigan) Lab 7: LSQ Guide Thursday, March 215t 2024 3/17

High Level

Why is Memory Annoying?
» Memory operations can have a huge latency!

> Memory operations don't work well with speculation

> Making memory state update out of order would get very complicated...
» Can't take back a store once it's gone
> Loads may issue out of order (and may need to grab old value)

2 Main Goals:
1. Hide memory latency (cache is mostly responsible for this)
> See lab 6 for this

2. Ensure correctness (here is where the LSQ comes in!)

(University of Michigan) Lab 7: LSQ Guide Thursday, March 215t 2024 4/17

Correctness

Why is Correctness a Concern?

» Loads are dependent on stores that write to the same address

> ANY unresolved store before a load creates a possible dependency since
we don't know where it is writing

» Without stores, loads out of order would cause no issue

» Might impact performance through invalidating cache lines needed for
earlier loads
» But loads themselves can never cause correctness issues

» Dependencies don't impact anything when all operations are in order

(University of Michigan) Lab 7: LSQ Guide Thursday, March 215t 2024 5/17

Design Space

Design Space

» There is a huge range of complexity with the load-store queue
P> Have to trade off between complexity and performance
» Find the optimizations that will give you the most bang for your buck

» This guide aims to give a high-level overview of your options

Implementation
» Memory operations are significantly harder to debug
> Incorrect values could have been written 1,000's of cycles prior

» Simply stalling on corner cases can reduce the number of bugs
significantly
> Ex: byte-level forwarding

(University of Michigan) Lab 7: LSQ Guide Thursday, March 215t 2024 6/17

Speculation and Forwarding

Options

» No speculation or forwarding: Must stall all loads or stores until the
last prior store reaches the head of the ROB
» Forwarding: Keep track of the values and addresses the stores write
to, and forward their data to any later loads if the addresses match
» Requires adding a store queue, but not a load queue
> Have to be careful about stores to bytes, half-words, and words
» Speculation: Let loads go ahead before prior stores know their
addresses
P> But have to save addresses and check that they don’t match prior
stores resolved later
» Requires adding a load queue and creating new infrastructure to squash
the incorrect load and all dependent instructions

(University of Michigan) Lab 7: LSQ Guide Thursday, March 215t 2024 7/17

Speculation and Forwarding

Complexity
» Now we will go over many options for your LSQ architecture, ranging
from simplest to most complex
» Be aware that this is a huge range of complexity, and each option will
take drastically different amounts of time

General Notes
» Stores may not write to cache immediately due to memory bus
contention
> Stores are added to store queue on dispatch to ensure they are in
order
» Same for load queue if present

(University of Michigan) Lab 7: LSQ Guide Thursday, March 215t 2024 8/17

No Forwarding or Speculation (But Out-of-Order Loads)

Approach

» Only issue a load if there is no older store is in the pipeline

> Add stalling logic in RS and a notification line for when the last store

completes

» Can't have a load in progress if an older store has not completed

Reservation Station

v

Store

SQ Empty

queue

Load
Unit

ROB

Data Cache

(University of Michigan)

Lab 7: LSQ Guide

Thursday, March 21%%, 2024 9/17

No forwarding or speculation Optimization

Approach
» Only issue load if all older stores have calculated their address
» Can interleave loads + stores, but only when stores have their addresses
» Don't issue a load whose address matches an in-flight store
» Stall in RS until store has finished writing to D-cache

Load
Unit

Data Cache 1

(University of Michigan) Lab 7: LSQ Guide Thursday, March 215t 2024 10 /17

Reservation -
2
Station £ % e
25
Store
’ queue

L

Adding forwarding (no speculation)

Approach

» Only issue load if all older stores have calculated their address

> If load address matches store in store queue, forward the value from

the store queue

> If there is not a match in the store queue, grab the value from

memory as usual

Reservation
Station

Addresses
Calcuated?

(University of Michigan)

Store

queue

Load
Unit

ROB

Data Cache

Lab 7: LSQ Guide

Thursday, March 21%%, 2024 11 /17

Forwarding at the Byte Level

Approach

» Now, account for byte offsets in address "matches"

» 8 possible ways to forward
> Word can get data from 4 byte and 2 half word addresses
» Half word can each forward from 2 byte addresses
» Example: lw is issuing at address 1000, and in the store queue there is
an older sb at 1002, and an older sb at 1003
> The lw would grab both of those bytes through forwarding, and get the

other 2 bytes (1000 and 1001) from memory

> Without byte-level resolution, the Iw would have to stall until all the sb

finish executing

Word
Half

Byte

(University of Michigan)

[3:0]

[3:2]

[1:0]

B | @

(1]

[0]

Lab 7: LSQ Guide

Thursday, March 21%%, 2024 12 /17

Adding Speculation

Approach

> Issue loads whenever values are ready; assume no conflicting stores
» Don't care if older stores have not calculated their addresses

» Still check the older stores that do have their address, and forward if
addresses align

> If a store calculates its address and finds that a younger load has
executed with a matching address, squash accordingly

» Now requires an ordered load queue
» Must record load and store positions at dispatch

Benefits

» Can now mask more of the memory latency of loads

(University of Michigan) Lab 7: LSQ Guide Thursday, March 215t 2024 13 /17

Adding Speculation

Two Flavors of Speculation

» Load-queue internal speculation: Send memory requests before
prior stores have resolved, but don't let the instruction leave the LSQ
until safe to do so

» Don't need to change other modules
» CDB speculation: speculated loads can go onto the CDB

> Requires changes outside LSQ to squash loads (like mispredicted
branches)
> This is a large jump in complexity

(University of Michigan) Lab 7: LSQ Guide Thursday, March 215t 2024 14 /17

Speculation Digram

Reservation
Station

Store
queue [<address>|

Load
queue

|—position-y|

—[value]—>»|

ROB

A L[
squash}]

Data Cache

NOTE: Only need squash signal if doing CDB speculation

(University of Michigan)

Lab 7: LSQ Guide

Thursday, March 21%%, 2024 15 /17

Speculation and Forwarding with "Bad Pair" Caching

Approach
» Improve the performance by making a "bad pairs" table/cache of past
problematic load/store pairs
» Whenever a store-to-load pair causes an exception, add the pair to the
table
» If you encounter the same load PC again, stall instead of speculating
to avoid the likely squash
» Only issue the load if its associated store has calculated its address
and value

> Essentially, this is conflict speculation

Recommended to use this if doing CDB speculation

(University of Michigan) Lab 7: LSQ Guide Thursday, March 215t 2024 16 /17

Final Thoughts

» Each approach requires different levels of complexity
» Speculation is a BIG jump in complexity (load queue and squashing)

» Can significantly simplify logic by stalling hard cases

» Minimal performance impact if only stalling in rare cases
> Ex: byte to word forwarding between OoO loads and stores

. . LQ internal | CDB
Simple Forwarding . .
Speculation | Speculation
) If not
Stall in RS? | Yes . Rare Rare
speculating

Store queue | No Yes Yes Yes
Load queue | No No Yes Yes
External

. No No No Yes
Squashing

Lab 7: LSQ Guide Thursday, March 21%%, 2024 17 /17

	Administrative
	Motivation
	Options
	Summary

