
University of Michigan, Ann Arbor Date: Tuesday, January 30th 2024

EECS 470 Project #3

Note:

• This is an individual assignment. While you may discuss the specification and help one another with
the SystemVerilog language, your solution – particularly the designs you submit – must be your own.

• The project milestone is due by Monday, February 5th (worth 5% of the project grade)

• The project is due by Sunday, February 11th

• Project 3 is considerably more work than projects 1 or 2. Do not leave it until the last minute!

1 Introduction

In this project you will be implementing the hazard and forwarding logic for a RICS-V, 5-stage pipelined
processor: the VeriSimpleV processor. You will also create multiple short Assembly unit tests to expose
buggy processors. This will prepare you for EECS 470’s final project, where you will work on a team to
extend VeriSimpleV to use one of the out-of-order implementations discussed in class, either a Pentium
Pro (P6) or MIPS R10K based design.

For this project there is an added milestone – worth 5% of your project grade – that hopes to ensure you do
not leave the project until the last minute. The milestone is due by Monday, February 5th.

2 The VeriSimpleV Processor

The VeriSimpleV processor is a 5-stage pipelined implementation of the 32-bit integer subset of the RISC-
V instruction set architecture (ISA). It is written in synthesizable, behavioral SystemVerilog. VeriSimpleV
is based on the 5-stage pipeline covered in class and has Instruction Fetch, Instruction Decode, Execute,
Memory, and Writeback stages (IF, ID, EX, MEM, WB).

But the processor is unfinished! The provided implementation has no hazard detection logic! To accom-
modate this, the provided processor only allows one instruction in the pipeline at a time to be absolutely
certain there are no hazards. The provided processor is correct, and it will produce the correct output for
all programs, but it has a miserable CPI of 5.0.

Note on clock period: The Makefile is set with a clock period of 30.0ns. This is both because of the
full 32-bit multiplication in EX stage’s ALU module, and because we want to speed up synthesis by giving
dc_shell a break. You will use the pipelined multiplier from project 2 in the final project to decrease your
processor’s clock period. However, you should not change the multiplier or clock period for project 3.

2.1 RISC-V

VeriSimpleV implements a subset of the 32-bit RISC-V ISA. It implements the Base I (Integer) and M
(multiplication/division) extensions, however we do not test or implement division or remainder instructions.
We also do not implement interrupts or other system level instructions, and memory is limited to 64KB.
The processor starts with the PC at address 0 and will halt upon writeback of a WFI instruction (Wait For
Interrupt, which will never come).

We use the the RISC-V toolchain installed on CAEN to test the processor by compiling and running both
Assembly (*.s) and C (*.c) programs found in the programs/ folder (see the Makefile section below for
how to run programs).

1

University of Michigan, Ann Arbor Date: Tuesday, January 30th 2024

3 Assignment

Your assignment is to modify the providedVeriSimpleV implementation to remove the stalls and implement
hazard and forwarding logic as described in lecture and the text. You will also create multiple short assembly
unit tests to expose buggy processors.

3.1 Assembly Unit Tests

For this part you will write short RISC-V Assembly unit tests to expose memory correctness or CPI bugs in
buggy processors. Each test must be 15 or fewer total lines (including comments) and must run to completion
on a correct processor. It will then be run on a buggy processor and compared to the correct output. If they
differ for any of your test cases, then you exposed the bug!

RISC-V assembly instructions look like:
addi x1, x0, 5 # register 1 = register 0 + 5

You should reference our sample assembly programs in programs/ to write test cases which expose a buggy
processor via either memory correctness or CPI.

You may submit up to five test cases by adding files to the programs/ folder that match the pattern:
programs/test [12345].s

i.e. programs/test 1.s

These are only due at the end of the project and not the milestone.

3.2 Hazards and Processor Implementation

Implement the following hazard and forwarding logic in the processor:

Structural Hazards Access to memory is shared between the IF and MEM stages. Stall IF
and let MEM have priority if there is a conflict.

This is the only hazard required for the milestone.

Control Hazards Predict all branches as not taken. Detect taken branches and squash any
predicted instructions.

Data Forwarding Most data dependencies should have their values forwarded into the EX
stage (even if the data aren’t used until a later stage)

Data Hazards Not all data dependencies can be forwarded. Stall any instructions whose data
will not be ready in time (Hint: only one type of instruction causes these hazards)

Your solution is subject to the following restrictions:

• Branches should resolve in the same stage as they are currently resolved.

• When stalling an instruction, be sure to set both the valid bit to 0 and the instruction to a `NOP.

• Data Hazard stalling should occur in the ID stage (since data are forwarded to EX). Instructions in the
IF stage will need to wait on ID, and stalls (invalidated instructions) should appear in the EX stage.

Your solution will be graded in simulation and synthesis on the criteria of memory correctness and correct
CPI. You must have the correct memory output to get any points – the provided processor is already correct
– but you are mainly graded on matching your CPI to a correct implementation.

Three example correct processor outputs (including the non-evaluated .ppln file output) are provided in the
correct_out/ folder.

2

University of Michigan, Ann Arbor Date: Tuesday, January 30th 2024

4 Project Files

For this project, you are provided with most of the code and the entire build system. This is a quick overview
of the Makefile and the verilog files you will be editing.

The VeriSimpleV pipeline is broken into 9 files in the verilog/ folder. There are 2 headers: sys_defs.svh
defines structures and `define's and is included by all files. ISA.svh defines RISC-V decoding information
used by the ID and EX stages. There are 5 files for the pipeline stages: stage_{if,id,ex,mem,wb}.sv.
The register file is regfile.sv and is instantiated inside the ID stage. Finally, the stages are tied together
by the pipeline module in cpu.sv.

The testbench and associated non-synthesizable verilog exists in the test/ folder. You should not modify
any of the files in test/ for project 3. Note that the memory module defined in the test/mem.sv file is
non-synthesizable.

Assembly and C programs are dependent on multiple files that you should not change. Assembly files
use a custom Assembly linker (programs/aslinker.lds). C programs depend on a custom C linker
(programs/aslinker.lds), a custom malloc implementation (programs/tj_malloc.h), and a C-RunTime
file (programs/crt.s) which zeroes out registers and calls a C program’s main function. You should not
change any of these.

Lab 4’s assignment will have you create a test system to build a ”ground truth” from the initial processor
that you can compare against as you build your processor.

4.1 Running Programs with the Makefile

Now that you’ve moved up to a complete processor design, testing is less about the testbench and more
about the programs. You have been provided with many Assembly and C code programs in the programs/
folder.

To run a program on the processor, run make <my_program>.out (ex: make no_hazard.out). This will
both compile your processor in verilog and build the program’s initial memory state as a *.mem file which
will be loaded into mem.sv by the testbench to start the program (at PC=0).

make <my_program>.out should be your main command for running programs: it creates the <my_program>.out,
<my_program>.cpi, <my_program>.wb, and <my_program>.ppln output, CPI, writeback, and pipeline out-
put files in the output/ directory.

*.out – General output and the final state of memory

*.cpi – The CPI calculation and overall program execution time

*.wb – The list of writes to registers done by the program

*.ppln – The state of each of the pipeline stages as the program is run

This is the most useful file for debugging, but is not as useful for final output compari-
son, since it contains internal details that don’t need to match exactly to have a correct
implementation.

4.2 Getting Started

We recommend you start the project by removing the provided stalling behavior and implementing structural
hazards for the milestone. Then proceed by creating some assembly test cases before implementing the rest
of the hazard and forwarding logic.

The stalling behavior is set in the verilog/cpu.sv file. You should open the file and find the always_ff block
where the next_if_valid signal is set. This is the start of a valid bit which is passed between the stages
along with the instruction, and it starts at 1 in the IF stage due to next_if_valid. The next_if_valid

3

University of Michigan, Ann Arbor Date: Tuesday, January 30th 2024

signal is currently set to read the valid bit from the WB stage, so will insert 4 invalid instructions between
every valid one.

Start by setting next_if_valid to always equal 1.

Then run a program like no_hazard and see what happens!

4.3 Notes

• Be careful with forwarding and register 0.

• Synthesized runs of the pipeline can take a few minutes, depending on the testcase and computer.

• There is a lot of SystemVerilog here; take your time looking it over. Try to understand how it works
before you modify it. The slides from Lab 4 will also help walk you through it.

• Start this process early!

5 Submission

To submit your project to the EECS 470 autograder, upload your solution files to the main branch of your
GitHub repository and run the project submission script for project 3:

/afs/umich.edu/class/eecs470/Public/470submit 3

Note: This will also run the milestone autograder and return the results in the same email (until the
milestone due date – Monday, February 5th).

Soon after your submission you will receive an email with a summary of the public output of the autograder.
This will contain only the public results of correctness tests and whether the autograder encountered any
errors and is not representative of your final grade.

Email the instructors or create a private Piazza post to debug any issues with the autograder.

The following files will be graded:

• verilog/cpu.sv

• verilog/regfile.sv

• verilog/stage_if.sv

• verilog/stage_id.sv

• verilog/stage_ex.sv

• verilog/stage_mem.sv

• verilog/stage_wb.sv

• verilog/sys_defs.svh

• verilog/ISA.svh

• Assembly tests matching the pattern programs/test [12345].s.
i.e. programs/test 1.s

These are only due at the end of the project and not the milestone.

4

University of Michigan, Ann Arbor Date: Tuesday, January 30th 2024

Appendix: Makefile Targets

The following Makefile targets are available to run programs on the processor:

---- Program Execution ----

These are your main commands for running programs and generating output

make <my_program>.out <- run a program on simv

output *.out, *.cpi, *.wb, and *.ppln files

make <my_program>.syn.out <- run a program on syn_simv and do the same

---- Executable Compilation ----

make simv <- compiles simv from the TESTBENCH and SOURCES

make syn_simv <- compiles syn_simv from TESTBENCH and SYNTH_FILES

make *.vg <- synthesize modules in SOURCES for use in syn_simv

make slack <- grep the slack status of any synthesized modules

---- Program Memory Compilation ----

Programs to run are in the programs/ directory

make programs/<my_program>.mem <- compile a program to a RISC-V memory file

make compile_all <- compile every program at once (in parallel with -j)

---- Dump Files ----

make <my_program>.dump <- disassembles compiled memory into RISC-V assembly dump files

make *.debug.dump <- for a .c program, creates dump files with a debug flag

make dump_all <- create all dump files at once (in parallel with -j)

---- Verdi ----

make <my_program>.verdi <- run a program in verdi via simv

make <my_program>.syn.verdi <- run a program in verdi via syn_simv

---- Visual Debugger ----

make <my_program>.vis <- run a program on the project 3 vtuber visual debugger!

make vis_simv <- compile the vtuber executable from VTUBER and SOURCES

---- Cleanup ----

make clean <- remove per-run files and compiled executable files

make nuke <- remove all files created from make rules

Figure 1: Reference table of Makefile targets

5

	Introduction
	The VeriSimpleV Processor
	RISC-V

	Assignment
	Assembly Unit Tests
	Hazards and Processor Implementation

	Project Files
	Running Programs with the Makefile
	Getting Started
	Notes

	Submission

