
Page | 1

EECS 473 Final Exam

Fall 2016

Name: ____________________________________ unique name: ___________________

Sign the honor code:

I have neither given nor received aid on this exam nor observed anyone else doing so.

NOTES:

1. Closed book and Closed notes
2. Do not write anything you want graded on the back pages of the exam.
3. There are 14 pages total for the exam. There is also a references handout.
4. Calculators are allowed, but no PDAs, Portables, Cell phones, etc. Using a calculator to store notes is

not allowed nor is a calculator with any type of wireless capability.
5. You have about 120 minutes for the exam.
Be sure to show work and explain what you’ve done when asked to do so. That may be very

significant in the grading of this exam.

Page | 2

1. Circle each of the following statements which are TRUE. [12 points, -2 per incorrectly

circled/not circled answer, minimum 0]

a) Source encoding generally involves adding error correction bits and is dependent on the

characteristics of the “source” data.

b) In the USA the FCC regulates the use of the frequency spectrum. A very small percentage of

the overall frequency is available for use by most consumer goods such as wireless routers.

c) For medium-to-high power applications where there are fairly large voltage drops, a

switching power supply is generally more efficient than a linear regulator, but the switching

supply tends to be more noisy.

d) Shannon’s Limit provides an upper-bound on the amount rate of useful data we can send

over a given channel. (The struck part was an error that wasn’t addressed during the exam. We took all

answers.)

e) Digital Signal Processors are a specialized form of a general purpose processor that is

optimized for doing digital signal processing at extremely high speed, but at the cost of using

a bit more power than a general purpose processor doing the same task.

f) A buck converter which converts 20V to 15V can potentially waste less than 15% of the

input power as heat, while an LDO would certainly waste more than that.

g) A LIPO battery is being used with a constant current draw of “10C”. You would expect that

the battery would last at least 6 minutes, but probably not much longer.

h) Busybox is a single Linux application which can perform the role of many standard

command-line utilities such as “ls” and “pwd”.

i) Fixed-point arithmetic is generally preferred over floating-point arithmetic in embedded

systems because fixed-point is easier to work with, uses less power, and can represent a

more dynamic range of numbers than floating point.

j) When designing a power distribution network, very low frequency noise (say 1KHz) is

primarily handled by the power supply.

k) When designing a power distribution network high frequency noise (say 900MHz) is

primarily handled by the power ground plane / bulk capacitors / parasitic inductors. (The

struck part was an error that wasn’t addressed during the exam. We took all answers.)

l) 16-QAM sends 256 bits of information in a single encoding.

Page | 3

2. For most forms of wireless communication, we communicate using sinusoids at some fixed

frequency and then vary the phase and amplitude of the signal. [6 points]

a. Why do we use a sinusoid rather than some other function (say a square wave for

example)? [4]

b. If we instead vary only the frequencies over a handful of specific frequencies, that is

called Frequency Shift Keying / Frequency Modulation / Frequency Table / Local QAM.

(circle one answer) [2]

3. Say you have a hamming(7,4)-code where you have 4 data elements (d1 to d4) followed by 3
parity bits (p1 to p3) where the parity bits are defined as follows (the function P() returns the
even one’s parity as we did in class, so e.g., P(1,1,1) =1 and P(0,1,1)=0.

• p1=P(d2, d3, d4)
• p2=P(d1, d2, d4)
• p3=P(d1, d2, d3)

 [6 points]
a) If d[1:4]=10012, what should be the value of p[1:3]? [2]

b) Assuming no more than one bit of data will go bad at a time, if the receiver receives the

packet “1100111 data bit, if any, is in error? Justify your answer. [4]

Page | 4

4. Consider the following code found as the read function member of the file_operations struct for

a Linux kernel module. It is associated with the device file "/dev/txx2" (so a read of the file

/dev/txx2 will result in this function being called). Assume that everything is set up

appropriately beforehand and that count will be 1024 any time the function is called.

ssize_t memory_read(struct file *filp, char *buf,

 size_t count, loff_t *f_pos) {

 /* Transferring data to user space */

 int x=count;

 if(x>5)

 x=5;

 copy_to_user (buf,"abcdefghijk",x);

 printk("<1> fpos= %d\n",*f_pos);

 /* Changing reading position as best suits */

 if (*f_pos <10) {

 *f_pos+=x;

 return x;

 } else {

 return 0;

 }

}

Now say the user types "cat /dev/txx2". What will happen? In addition to filling in the

boxes below indicating what’s on the screen and what’s in the log file, but sure to clearly explain

why. [12 points]

Appears on the screen: Appears in the log file:

Page | 5

5. Answer the following questions about fixed-point numbers. For purposes of this question,

assume that “largest value” means “closest to positive infinity” and “smallest value” means

“closest to negative infinity”. Assume all values are signed. [14 points]

a. What is the largest value that can be represented as an 8-bit Q5 number? Be exact, you

can give your answer in decimal or as a fraction. [2]

b. What is the binary representation for the largest value that can be represented as an 8-

bit Q5 number? [2]

c. What is the smallest value that can be represented as an 8-bit Q5 number? Be exact,

you can give your answer in decimal or as a fraction. [2]

d. Write a function named q5mult, which takes in two signed 8-bit Q5 numbers as input

and outputs a signed 8-bit Q5 which is the product of the two inputs. If the exact result

cannot be represented either due to overflow (the value is outside the range of

representation) or due to precision/rounding issues, you should set the output to the

nearest output. [8]

char q5mult(char a, char b) {

Page | 6

6. Consider a 2.4GHz radio/receiver pair

where the transmitter broadcasts at

20mW and uses an antenna with a gain of

4x over an isotropic antenna. The

receiver has a sensitivity of -85 dBm and

uses the same antenna as the

transmitter. What is the expected range?

Show your work [5]

7. The above graph shows the frequency vs. impedance for a given capacitor. Redraw the graph

showing the same information for 2 of these capacitors in parallel. [5 points]

Page | 7

Design Problem: Engine Air Intake Control System
(You will want to read the whole problem before starting)

You are given the task to control the air flow of an automotive intake system by monitoring pressure

and temperature and then adjusting a flow control valve accordingly.

 In particular, if the engine pressure is above 180psi OR the temperature is above 220

degrees F the control voltage should be set to 3.0V, otherwise that voltage should be set to

1.0V.

That task must be done every 10ms in order to keep the engine running correctly. In addition, there

is a device (“Pressure Level Detect Logic”) that continuously monitors the pressure. If it ever

exceeds some fixed threshold you need to capture the temperature and pressure values

immediately and start a check engine process. That process takes a long time to run, but is not

essential to keep the engine running.

This experimental system uses a Raspberry Pi (RPI) running FreeRTOS. You will need to create a task

that runs every 10ms to control the pressure. There needs to be another low-priority task to handle

the engine check process.

There are a number of parts to this problem.

1. Connecting the various components.

2. Write a function that uses the ADC to get the pressure and temperature.

3. Write a function that writes a DAC to control the valve.

4. Write a task that reads the sensors and adjusts the control valve every 10ms using the

functions written in parts 2 and 3.

5. Write a low-priority task that executes when the interrupt function tells it to

6. Create an interrupt function that starts the check engine task, reads the pressure and

temperature values, and places those two values in global variables.

We have supplied a main program with the references. Again, we recommend you read over the

entire problem before beginning.

Processor, Sensor and Detector Characteristics

 RPI: RTOS tick is every 1ms.

 Temperature Sensor: Provides a voltage proportional to temperature.

 Pressure Sensors: Provides voltage proportional to pressure.

 ADC: Four channel 10 bit ADC with SPI interface. Data sheet excerpts in appendix.

 DAC: Two channel 8 bit DAC with SPI interface. Data sheet excerpts in appendix.

 Pressure Level Detect Logic: Is provided.

Page | 8

Part 1: Connections [7 points]
Connect the ADC, DAC and pressure detect/interrupt detection circuit to the RPI. Use GPIOs 23 for the

MCP3004 ADC SPI select, GPIO 24 for the MAX522 DAC SPI select and GPIO 25 for the interrupt. Assume

all the devices run on 3.3 volts and that the ADC and DAC reference voltages are also 3.3V. Pinouts and

SPI interface details are provided in an appendix at the end of the test. CHO and CH1 of the MCP3004

will be used to read the temperature and pressure sensors respectively. OUTA of the MAX522 will be

used to control the valve.

Page | 9

Part 2: Read Pressure and Temperature [8 points]
For this part you need to read the temperature and pressure using the ADC. The function is to provide

the 10-bit values read from the temperature and pressure sensors as values pointed to by the function

parameters.

void get_engine_values(unint32 *temp, uint32 *pressure);

SPI function

The following SPI function is available. You can assume the clock speed, mode, and frame size are

already initialized and this SPI device is a master. Remember, SPI devices are full duplex. That is they

send and transmit at the same time.

void spi_transaction(uint32 transmit frame, uint32* data,

 char length)

 transmit frame: A 32-bit unsigned integer that contains the data you wish to transmit

 data: Is a pointer to a 32-bit unsigned integer where the received data will be placed

 length: is the number of bytes to transmit/receive. It must be either 1, 2, 3 or 4.

Sensor and control voltage formula

 The temperature sensor has a range from 0 degrees to 660 degrees Fahrenheit with 0.2

degrees/mV.

 The pressure sensor has a range from 0 to 330 psi 0.1psi/mV.

GPIO function

The following function can be used to set the GPIO to low or high.

void set_gpio(uint8 gpio_number, uint8 value);

Where gpio_number is the gpio pin number to be set and value is the value it is set to.

Page | 10

(Part 2 continued)

Write the C code for your API below. Please don’t provide answers on the back.

void get_engine_values(unint32 *temp, uint32 *pressure) {

Page | 11

Part 3: Write DAC for Valve Control Voltage API [6 points]
For this part you need to write a function that will provide the voltage for the control valve. The function

prototype follows with the control voltage passed as an unsigned 32-bit integer with the value in

millivolts (mV).

void set_valve_voltage(uint32 mV){

Page | 12

Part 4: Valve Task [7 points]
Provide a task that will run every 10ms using the functions you wrote above to set the valve’s input

correctly. The specification for what value the valve input should be set to are found on the first page of

the design problem.

Page | 13

Part 5: Interrupt [6 points]
For this part you need to read the pressure and temperature, storing the values in the globals TEMP and

PRES. You then need to signal the check engine task to start.

void rupt(int num, void* parm){

Page | 14

Part 6: Check Engine Task [6 points]
For this part you will write the low-priority task that will only run when signaled to do so by the interrupt

handler you wrote in part 5. The function you are to invoke is do_engine_check(). It has a

prototype as follows:

void do_engine_check(uint32 temperature, unit32 pressure)

This function may take a long time (100ms or more) to run. It takes the temperature (in degrees

Fahrenheit) and the pressure (in psi) as arguments. Those should be the values as they existed as close

as possible to the event that triggered the interrupt.

References | 1

References

MAIN (provided)
#define IRQn 49 // Interrupt number (pin 25)

#define IRQ_TYPE DETECT_RISING // Detection type

xSemaphoreHandle lock1;

uint32_t TEMP, PRES;

void main(void) {

 DisableInterrupts();

 InitInterruptController();

 RegisterInterrupt(IRQn, rupt, NULL);

 EnableGpioDetect(INT_PIN, IRQ_TYPE);

 ConfigureGPIO(); // configures GPIO pins (direction etc.)

 ConfigureADC(); // configures ADC (including turning it on)

 ConfigureDAC(); // configures DAC (including turning it on)

 vSemaphoreCreateBinary (lock1);

 xTaskCreate(task1, "voltage control", 128, NULL, 2, NULL);

 xTaskCreate(task2, "check engine", 128, NULL, 1, NULL);

 EnableInterrupt(IRQn);

 EnableInterrupts();

 vTaskStartScheduler();

 while(1) {};

}

References | 2

MAX522 DAC Details

 It is a 8 bit device with a reference voltage of 3.3 V.

 It has two DACs. Use DACA to control the valve.

 It is a SPI interface with following transaction example

Notes:

 Assume the * values are 0.

 Set the don’t care values (X’s) to 0.

References | 3

MAX522 DAC Pinout and Functional Diagram

References | 4

MCP3004 ADC Details

 It is a 10 bit device with a reference voltage of 1.024 volts or 1 mv/LSB. (the struck part was an error

addressed during the exam)

 It has an analog multiplexer allowing for the selection of one of for inputs: CH0, CH1, CH2 and

CH3.

 Only one channel can be converted at a time.

 It is a SPI interface with following transaction example.

 Assume the * values are 0.

 Set the don’t care values (X’s) to 0.

Some Configuration Notes:

 Assume we are using Single-ended mode.

 Temperature is on CH0.

 Pressure is on CH1.

 CS is the SPI chip select line.

References | 5

MPC3004 ADC Pinout and Functional Diagram

References | 6

Sample FreeRTOS functions and examples.

// Perform an action every 10 ticks.

 void vTaskFunction(void * pvParameters)

 {

 TickType_t xLastWakeTime;

 const TickType_t xFrequency = 10;

 // Initialise the xLastWakeTime variable with the current time.

 xLastWakeTime = xTaskGetTickCount();

 for(;;)

 {

 // Wait for the next cycle.

 vTaskDelayUntil(&xLastWakeTime, xFrequency);

 // Perform action here.

 }

 }

xSemaphoreGiveFromISR

 (

 SemaphoreHandle_t xSemaphore,

 signed BaseType_t *pxHigherPriorityTaskWoken

)

Macro to release a semaphore. The semaphore must have previously been created with a call to
xSemaphoreCreateBinary() or xSemaphoreCreateCounting().

Mutex type semaphores (those created using a call to xSemaphoreCreateMutex()) must not be used
with this macro.

This macro can be used from an ISR.
Parameters:

xSemaphore A handle to the semaphore being released. This is the
handle returned when the semaphore was created.

pxHigherPriorityTaskWoken xSemaphoreGiveFromISR() will set
*pxHigherPriorityTaskWoken to pdTRUE if giving the
semaphore caused a task to unblock, and the unblocked task
has a priority higher than the currently running task. If
xSemaphoreGiveFromISR() sets this value to pdTRUE then
a context switch should be requested before the interrupt is
exited.

Returns:
pdTRUE if the semaphore was successfully given, otherwise errQUEUE_FULL.

References | 7

xSemaphoreGive(SemaphoreHandle_t xSemaphore);

Macro to release a semaphore. The semaphore must have previously been created with a call to
xSemaphoreCreateBinary(), xSemaphoreCreateMutex() or xSemaphoreCreateCounting(), and
obtained using sSemaphoreTake().

This must not be used from an ISR. See xSemaphoreGiveFromISR() for an alternative which can be
used from an ISR.

This macro must also not be used on semaphores created using
xSemaphoreCreateRecursiveMutex().

Parameters:

xSemaphore A handle to the semaphore being released. This is the handle returned

when the semaphore was created.

Returns:
pdTRUE if the semaphore was released. pdFALSE if an error occurred. Semaphores are
implemented using queues. An error can occur if there is no space on the queue to post a
message - indicating that the semaphore was not first obtained correctly.

xSemaphoreTakeFromISR

 (

 SemaphoreHandle_t xSemaphore,

 signed BaseType_t *pxHigherPriorityTaskWoken

)

A version of xSemaphoreTake() that can be called from an ISR. Unlike xSemaphoreTake(),
xSemaphoreTakeFromISR() does not permit a block time to be specified.
Parameters:

xSemaphore The semaphore being 'taken'. A semaphore is referenced by
a variable of type SemaphoreHandle_t and must be explicitly
created before being used.

pxHigherPriorityTaskWoken It is possible (although unlikely, and dependent on the
semaphore type) that a semaphore will have one or more
tasks blocked on it waiting to give the semaphore. Calling
xSemaphoreTakeFromISR() will make a task that was
blocked waiting to give the semaphore leave the Blocked
state. If calling the API function causes a task to leave the
Blocked state, and the unblocked task has a priority equal to
or higher than the currently executing task (the task that was
interrupted), then, internally, the API function will set
*pxHigherPriorityTaskWoken to pdTRUE.

http://www.freertos.org/a00122.html

References | 8

xSemaphoreTake(SemaphoreHandle_t xSemaphore,

 TickType_t xTicksToWait);

Macro to obtain a semaphore. The semaphore must have previously been created with a call to
xSemaphoreCreateBinary(), xSemaphoreCreateMutex() or xSemaphoreCreateCounting().

This macro must not be called from an ISR. xQueueReceiveFromISR() can be used to take a semaphore
from within an interrupt if required, although this would not be a normal operation. Semaphores use
queues as their underlying mechanism, so functions are to some extent interoperable.
Parameters:

xSemaphore A handle to the semaphore being taken - obtained when the semaphore was
created.

xTicksToWait The time in ticks to wait for the semaphore to become available. The macro
portTICK_PERIOD_MS can be used to convert this to a real time. A block time
of zero can be used to poll the semaphore.

If INCLUDE_vTaskSuspend is set to '1' then specifying the block time as
portMAX_DELAY will cause the task to block indefinitely (without a timeout).

Returns:
pdTRUE if the semaphore was obtained. pdFALSE if xTicksToWait expired without the
semaphore becoming available.

http://www.freertos.org/a00110.html

