FreeRTOS Examples

```
int main( void )
ł
    /* Create one of the two tasks. Note that a real application should check
    the return value of the xTaskCreate() call to ensure the task was created
    successfully. */
                    vTask1, /* Pointer to the function that implements the task. */
    xTaskCreate(
                    "Task 1",/* Text name for the task. This is to facilitate
                             debugging only. */
                             /* Stack depth - most small microcontrollers will use
                    1000,
                             much less stack than this. */
                    NULL,
                             /* We are not using the task parameter. */
                             /* This task will run at priority 1. */
                    1.
                    NULL ); /* We are not going to use the task handle. */
    /* Create the other task in exactly the same way and at the same priority. ^{\prime}
    xTaskCreate( vTask2, "Task 2", 1000, NULL, 1, NULL );
    /* Start the scheduler so the tasks start executing. */
    vTaskStartScheduler();
   // Perform an action every 10 ticks.
   void vTaskFunction( void * pvParameters )
   TickType_t xLastWakeTime;
   const TickType_t xFrequency = 10;
       // Initialise the xLastWakeTime variable with the current time.
       xLastWakeTime = xTaskGetTickCount();
       for( ;; )
       {
           // Wait for the next cycle.
           vTaskDelayUntil( &xLastWakeTime, xFrequency );
           // Perform action here.
       }
   }
```

```
SemaphoreHandle_t xSemaphore;
vSemaphoreCreateBinary( xSemaphore );
```

xSemaphoreGiveFromISR(xSemaphore, *pxHigherPriorityTaskWoken);

```
/* See if the mutex can be obtained. If the mutex is not available
wait 10 ticks to see if it becomes free. */
if( xSemaphoreTake( xSemaphore, 10 ) == pdTRUE )
-
    /* The mutex was successfully obtained so the shared resource can be
   accessed safely. */
    /* ... */
    /* Access to the shared resource is complete, so the mutex is
   returned. */
   xSemaphoreGive( xSemaphore );
}
else
ł
    /* The mutex could not be obtained even after waiting 10 ticks, so
    the shared resource cannot be accessed. */
}
```

List of Arduino APIs:

I2C

#include <Wire.h>

Wire.beginTransmission(addr);	; // Begin a transmission to the I2C servant device with the given address. // Subsequently, queue bytes for transmission with the write() function
Wire.write(val);	<pre>// and transmit them by calling endTransmission(). // Writes data from a servant device in response to a request from a // master, or queues bytes for transmission from a master to servant // device (in-between calls to beginTransmission() and // endTransmission()).</pre>
Wire.endTransmission();	<pre>// Ends a transmission to a servant device that was begun by // beginTransmission() and transmits the bytes that were queued by // write().</pre>
Wire.requestFrom(addr, num)	//Send read request for 'num' bytes to device with I2C address 'addr'
Wire.available()	//Is data we've asked to read available on the I2C bus? Returns //how many bytes are available.
Wire.read()	 // Reads a byte that was transmitted from a servant device to a master // after a call to requestFrom() or was transmitted from a master to a // servant. This is a blocking transaction. If a NACK is received, function returns 0.

Note: Only the pins A4 and A5 can be used as I2C pins. It is set automatically by the Wire library. A4 is SDA and A5 is SCL.

I2C example

Analog Read

Uno: operating voltage: 5V, usable pins: A0-A5, bits 10 analogRead(pin) //input is pin number (A0 to A5 on most boards), output is analog value on pin.

Analog Write

Uno: PWM pins 3, 5, 6, 9, 10, 11. PWM frequency 490 Hz (pins 5 and 6: 980 Hz) analogWrite(pin, value) // pin to write to. value is the duty cycle: between 0 (always off) and 255 (always on)

Digital I/O

pinMode(pin, mode)	//mode is INPUT, OUTPUT or INPUT_PULLUP
digitalWrite(pin, value)	//Write value HIGH/LOW at GPIO 'pin'
digitalRead(pin)	// Reads the value from a specified digital pin, either HIGH or LOW.
UART/Serial serial.begin(speed)	//initializes the UART to "speed" baud.
serial.read()	// returns the first byte of incoming serial data (or -1 if not data is available)
serial.write(buf, len)	// buf is an array of characters you wish to send. Len is how many bytes to send
Serial.print(78) gives "78"	Serial.print(1.23456) gives "1.23"
Serial.print('N') gives "N"	Serial.print("Hello world.") gives "Hello world."

Servo

servo.attach(pin)	// Attach the Servo variable to a pin. Note that in Arduino 0016 and earlier,
	// the Servo library supports servos on only two pins: 9 and 10.
servo.write(angle)	<pre>// specifies an angle to write from 0 to 180.</pre>

Servo example

```
#include <Servo.h>
```

```
Servo myservo;
void setup()
{
  myservo.attach(9);
  myservo.write(90); // set servo to mid-point
}
```

```
void loop() {}
```

Default SPI Pins on Arduino UNO: MOSI: GPIO 11; MISO: GPIO 12; CLK: GPIO 13; SS: GPIO 10

SPI.begin() : Initializes the SPI pins to SS = 1, SCLK = 0 , MOSI = 0;

SPISettings my_spi_setting(speed, data order, mode):

receivedVal = **SPI.transfer**(val): Sends an 8-bit value on the SPI bus. At the same time it reads the value from the servant and returns the value.

SPI sample code:

#include <SPI.h>

```
// Example with incompatible SPI devices (i.e they need different SPI MODE
const int servantAPin = 20;
const int servantBPin = 21;
// set up the speed, data order and data mode
SPISettings settingsA(2000000, MSBFIRST, SPI MODE1);
SPISettings settingsB(16000000, LSBFIRST, SPI MODE3);
void setup() {
 // set the Servant Select Pins as outputs and drive them high.
 pinMode (servantAPin, OUTPUT); digitalWrite (servantAPin, HIGH);
 pinMode (servantBPin, OUTPUT); digitalWrite (servantBPin, HIGH);
 SPI.begin();
uint8 t stat, val1, val2, result;
void loop() {
  // read three bytes from device A
 SPI.beginTransaction(settingsA);
                                     digitalWrite (servantAPin, LOW);
 // reading only, so data sent does not matter
                          val1 = SPI.transfer(0);
                                                     val2 = SPI.transfer(0);
 stat = SPI.transfer(0);
 digitalWrite (servantAPin, HIGH);
 SPI.endTransaction();
 // if stat is 1 or 2, send val1 or val2 else zero
 if (stat == 1) {
  result = val1;
  } else if (stat == 2) {
  result = val2;
  } else {
  result = 0;
  // send result to device B
 SPI.beginTransaction(settingsB);
 digitalWrite (servantBPin, LOW);
 SPI.transfer(result);
 digitalWrite (servantBPin, HIGH);
 SPI.endTransaction();
}
```


ADXL345

3-Axis, $\pm 2 g/\pm 4 g/\pm 8 g/\pm 16 g$ Digital Accelerometer

FEATURES

- \blacktriangleright Ultralow power: as low as 23 μA in measurement mode and 0.1 μA in standby mode at V_S = 2.5 V (typical)
- Power consumption scales automatically with bandwidth
- User-selectable resolution
 - Fixed 10-bit resolution
 - Full resolution, where resolution increases with g range, up to 13-bit resolution at ±16 g (maintaining 4 mg/LSB scale factor in all g ranges)
- Embedded memory management system with FIFO technology minimizes host processor load
- Single tap/double tap detection
- Activity/inactivity monitoring
- Free-fall detection
- ▶ Supply voltage range: 2.0 V to 3.6 V
- I/O voltage range: 1.7 V to V_S
- SPI (3- and 4-wire) and I²C digital interfaces
- > Flexible interrupt modes mappable to either interrupt pin
- Measurement ranges selectable via serial command
- ▶ Bandwidth selectable via serial command
- ▶ Wide temperature range (-40°C to +85°C)
- 10,000 g shock survival
- Pb free/RoHS compliant
- ▶ Small and thin: 3 mm × 5 mm × 1 mm LGA package

APPLICATIONS

- Handsets
- Medical instrumentation

FUNCTIONAL BLOCK DIAGRAM

- Gaming and pointing devices
- Industrial instrumentation
- Personal navigation devices
- Hard disk drive (HDD) protection

GENERAL DESCRIPTION

The ADXL345 is a small, thin, ultralow power, 3-axis accelerometer with high resolution (13-bit) measurement at up to $\pm 16 g$. Digital output data is formatted as 16-bit twos complement and is accessible through either a SPI (3- or 4-wire) or I²C digital interface.

The ADXL345 is well suited for mobile device applications. It measures the static acceleration of gravity in tilt-sensing applications, as well as dynamic acceleration resulting from motion or shock. Its high resolution (3.9 mg/LSB) enables measurement of inclination changes less than 1.0°.

Several special sensing functions are provided. Activity and inactivity sensing detect the presence or lack of motion by comparing the acceleration on any axis with user-set thresholds. Tap sensing detects single and double taps in any direction. Free-fall sensing detects if the device is falling. These functions can be mapped individually to either of two interrupt output pins. An integrated memory management system with a 32-level first in, first out (FIFO) buffer can be used to store data to minimize host processor activity and lower overall system power consumption.

Low power modes enable intelligent motion-based power management with threshold sensing and active acceleration measurement at extremely low power dissipation.

The ADXL345 is supplied in a small, thin, $3 \text{ mm} \times 5 \text{ mm} \times 1 \text{ mm}$, 14-lead, plastic package.

Rev. G

Information furnished by Analog Devices is believed to be accurate and reliable "as is". However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	1
Applications	1
General Description	1
Functional Block Diagram	1
Specifications	3
Absolute Maximum Ratings	5
Thermal Resistance	5
Recommended Soldering Profile	5
ESD Caution	5
Pin Configuration and Function Descriptions	6
Typical Performance Characteristics	7
Theory of Operation	12
Power Sequencing	12
Power Savings	13
Serial Communications	14
SPI	14
I ² C	17
Interrupts	19
DATA_READY	20
SINGLE_TAP	20
DOUBLE_TAP	20
Activity	20
Inactivity	20
FREE_FALL	20
Watermark	20
Overrun	20
FIFO	21

Bypass Mode	21
FIFO Mode	21
Stream Mode	21
Trigger Mode	21
Retrieving Data from FIFO	21
Self-Test	22
Register Map	23
Register Definitions	24
Applications Information	29
Power Supply Decoupling	29
Mechanical Considerations for Mounting	29
Tap Detection	29
Threshold	30
Link Mode	30
Sleep Mode vs. Low Power Mode	30
Offset Calibration	30
Using Self-Test	31
Asynchronous Data Readings	32
Data Formatting of Upper Data Rates	32
Noise Performance	33
Operation at Voltages Other Than 2.5 V	34
Offset Performance at Lowest Data Rates	34
Axes of Acceleration Sensitivity	35
Layout and Design Recommendations	35
Outline Dimensions	36
Ordering Guide	36
Evaluation Boards	36

REVISION HISTORY

5/2022—Rev. F to Rev. G

Deleted Package Information Section	5
Added Recommended Soldering Profile Section	5
Moved Figure 2 and Table 4	5
Noved Table 13	19
Change to Using Self-Test Section	. 31
Added Asynchronous Data Readings Section	32

SPECIFICATIONS

 $T_A = 25^{\circ}C$, $V_S = 2.5 V$, $V_{DD I/O} = 1.8 V$, acceleration = 0 g, $C_S = 10 \mu$ F tantalum, $C_{I/O} = 0.1 \mu$ F, output data rate (ODR) = 800 Hz, unless otherwise noted. All minimum and maximum specifications are guaranteed. Typical specifications are not guaranteed.

Table 1.					
Parameter	Test Conditions	Min	Typ ¹	Max	Unit
SENSOR INPUT	Each axis				
Measurement Range	User selectable		±2, ±4, ±8, ±16		g
Nonlinearity	Percentage of full scale		±0.5		%
Inter-Axis Alignment Error			±0.1		Degrees
Cross-Axis Sensitivity ²			±1		%
OUTPUT RESOLUTION	Each axis				
All g Ranges	10-bit resolution		10		Bits
±2 g Range	Full resolution		10		Bits
±4 g Range	Full resolution		11		Bits
±8 g Range	Full resolution		12		Bits
±16 g Range	Full resolution		13		Bits
SENSITIVITY	Each axis				
Sensitivity at X _{OUT} , Y _{OUT} , Z _{OUT}	All g-ranges, full resolution	230	256	282	LSB/g
	$\pm 2 g$, 10-bit resolution	230	256	282	LSB/g
	$\pm 4 g$, 10-bit resolution	115	128	141	LSB/g
	±8 g, 10-bit resolution	57	64	71	LSB/g
	±16 g, 10-bit resolution	29	32	35	LSB/g
Sensitivity Deviation from Ideal	All g-ranges		±1.0		%
Scale Factor at X _{OUT} , Y _{OUT} , Z _{OUT}	All g-ranges, full resolution	3.5	3.9	4.3	mg/LSB
	$\pm 2 g$, 10-bit resolution	3.5	3.9	4.3	mg/LSB
	±4 g, 10-bit resolution	7.1	7.8	8.7	mg/LSB
	±8 g, 10-bit resolution	14.1	15.6	17.5	mg/LSB
	±16 g, 10-bit resolution	28.6	31.2	34.5	mg/LSB
Sensitivity Change Due to Temperature			±0.01		%/°C
0 g OFFSET	Each axis				
0 g Output for X _{OUT} , Y _{OUT}		-150	0	+150	mg
0 g Output for Z _{OUT}		-250	0	+250	mg
0 g Output Deviation from Ideal, X _{OUT} , Y _{OUT}			±35		mg
0 g Output Deviation from Ideal, Z _{OUT}			±40		mg
0 g Offset vs. Temperature for X-, Y-Axes			±0.4		mg/°C
0 g Offset vs. Temperature for Z-Axis			±1.2		mg/°C
NOISE					
X-, Y-Axes			0.75		LSB rms
	ODR = 100 Hz for $\pm 2 g$, 10-bit resolution or				
	all g-ranges, full resolution				
Z-Axis			1.1		LSB rms
	ODR = 100 Hz for $\pm 2 g$, 10-bit resolution or				
	all g-ranges, full resolution				
OUTPUT DATA RATE AND BANDWIDTH	User selectable				
Output Data Rate (ODR) ^{3, 4, 5}		0.1		3200	Hz
SELF-TEST ⁶					
Output Change in X-Axis		0.20		2.10	g

SPECIFICATIONS

Table 1.

Parameter	Test Conditions	Min Typ ¹	Мах	Unit
Output Change in Y-Axis		-2.10	-0.20	g
Output Change in Z-Axis		0.30	3.40	g
POWER SUPPLY				
Operating Voltage Range (V _S)		2.0 2.5	3.6	V
Interface Voltage Range (V _{DD I/O})		1.7 1.8	V _S	V
Supply Current	ODR ≥ 100 Hz	140		μA
	ODR < 10 Hz	30		μA
Standby Mode Leakage Current		0.1		μA
Turn-On and Wake-Up Time ⁷	ODR = 3200 Hz	1.4		ms
TEMPERATURE				
Operating Temperature Range		-40	+85	°C
WEIGHT				
Device Weight		30		mg

¹ The typical specifications shown are for at least 68% of the population of parts and are based on the worst case of mean $\pm 1 \sigma$, except for 0 g output and sensitivity, which represents the target value. For 0 g offset and sensitivity, the deviation from the ideal describes the worst case of mean $\pm 1 \sigma$.

² Cross-axis sensitivity is defined as coupling between any two axes.

³ Bandwidth is the -3 dB frequency and is half the output data rate, bandwidth = ODR/2.

⁴ The output format for the 3200 Hz and 1600 Hz ODRs is different than the output format for the remaining ODRs. This difference is described in the Data Formatting of Upper Data Rates section.

⁵ Output data rates below 6.25 Hz exhibit additional offset shift with increased temperature, depending on selected output data rate. Refer to the Offset Performance at Lowest Data Rates section for details.

- ⁶ Self-test change is defined as the output (g) when the SELF_TEST bit = 1 (in the DATA_FORMAT register, Address 0x31) minus the output (g) when the SELF_TEST bit = 0. Due to device filtering, the output reaches its final value after 4 × T when enabling or disabling self-test, where T = 1/(data rate). The part must be in normal power operation (LOW_POWER bit = 0 in the BW_RATE register, Address 0x2C) for self-test to operate correctly.
- ⁷ Turn-on and wake-up times are determined by the user-defined bandwidth. At a 100 Hz data rate, the turn-on and wake-up times are each approximately 11.1 ms. For other data rates, the turn-on and wake-up times are each approximately τ + 1.1 in milliseconds, where τ = 1/(data rate).

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Acceleration	
Any Axis, Unpowered	10,000 <i>g</i>
Any Axis, Powered	10,000 <i>g</i>
V _S	-0.3 V to +3.9 V
V _{DD I/O}	-0.3 V to +3.9 V
Digital Pins	-0.3 V to V _{DD I/O} + 0.3 V or 3.9 V, whichever is less
All Other Pins	-0.3 V to +3.9 V
Output Short-Circuit Duration (Any Pin to Ground)	Indefinite
Temperature Range	
Powered	-40°C to +105°C
Storage	-40°C to +105°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Table 3. Package Characteristics

Package Type	θ_{JA}	θ_{JC}	Device Weight
14-Terminal LGA	150°C/W	85°C/W	30 mg

RECOMMENDED SOLDERING PROFILE

Figure 2 and Table 4 provide details about the recommended soldering profile.

Figure 2. Recommended Soldering Profile

Table 4. Recommended Soldering Profile^{1, 2}

	Condition			
Profile Feature	Sn63/Pb37	Pb-Free		
Average Ramp Rate from Liquid Temperature	3°C/sec max-	3°C/sec maxi-		
(T _L) to Peak Temperature (T _P)	imum	mum		
Preheat				
Minimum Temperature (T _{SMIN})	100°C	150°C		
Maximum Temperature (T _{SMAX})	150°C	200°C		
Time from T_{SMIN} to $T_{\text{SMAX}}\left(t_{S}\right)$	60 sec to 120	60 sec to 180		
	sec	sec		
T _{SMAX} to T _L Ramp-Up Rate	3°C/sec max-	3°C/sec maxi-		
	imum	mum		
Liquid Temperature (T _L)	183°C	217°C		
Time Maintained Above T_L (t_L)	60 sec to 150	60 sec to 150		
	sec	sec		
Peak Temperature (T _P)	240 + 0/-5°C	260 + 0/-5°C		
Time of Actual $T_P - 5^{\circ}C$ (t _P)	10 sec to 30	20 sec to 40		
	sec	sec		
Ramp-Down Rate	6°C/sec max-	6°C/sec maxi-		
	imum	mum		
Time 25°C to Peak Temperature	6 minutes	8 minutes		
	maximum	maximum		

¹ Based on JEDEC Standard J-STD-020D.1.

² For best results, the soldering profile should be in accordance with the recommendations of the manufacturer of the solder paste used.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. Pin Configuration (Top View)

Pin No.	Mnemonic	Description
1	V _{DD I/O}	Digital Interface Supply Voltage.
2	GND	This pin must be connected to ground.
3	RESERVED	Reserved. This pin must be connected to V_S or left open.
4	GND	This pin must be connected to ground.
5	GND	This pin must be connected to ground.
6	Vs	Supply Voltage.
7	CS	Chip Select.
8	INT1	Interrupt 1 Output.
9	INT2	Interrupt 2 Output.
10	NC	Not Internally Connected.
11	RESERVED	Reserved. This pin must be connected to ground or left open.
12	SDO/ALT ADDRESS	Serial Data Output (SPI 4-Wire)/Alternate I ² C Address Select (I ² C).
13	SDA/SDI/SDIO	Serial Data (I ² C)/Serial Data Input (SPI 4-Wire)/Serial Data Input and Output (SPI 3-Wire).
14	SCL/SCLK	Serial Communications Clock. SCL is the clock for I ² C, and SCLK is the clock for SPI.

I²C and SPI digital communications are available. In both cases, the ADXL345 operates as a slave. I²C mode is enabled if the \overline{CS} pin is tied high to V_{DD I/O}. The \overline{CS} pin should always be tied high to V_{DD I/O} or be driven by an external controller because there is no default mode if the \overline{CS} pin is left unconnected. Therefore, not taking these precautions may result in an inability to communicate with the part. In SPI mode, the \overline{CS} pin is controlled by the bus master. In both SPI and I²C modes of operation, data transmitted from the ADXL345 to the master device should be ignored during writes to the ADXL345.

SPI

For SPI, either 3- or 4-wire configuration is possible, as shown in the connection diagrams in Figure 34 and Figure 35. Clearing the SPI bit (Bit D6) in the DATA_FORMAT register (Address 0x31) selects 4-wire mode, whereas setting the SPI bit selects 3-wire mode. The maximum SPI clock speed is 5 MHz with 100 pF maximum loading, and the timing scheme follows clock polarity (CPOL) = 1 and clock phase (CPHA) = 1. If power is applied to the ADXL345 before the clock polarity and phase of the host processor are configured, the \overline{CS} pin should be brought high before changing the clock polarity and phase. When using 3-wire SPI, it is recommended that the SDO pin be either pulled up to V_{DD I/O} or pulled down to GND via a 10 k Ω resistor.

ADXL345	PROCESSOR
<u>cs</u> ϕ —	— фроит 🛛
sdio 🔶 — —	—фоім/ойт
SDO 🗘	
SCLK	—Фроит

Figure 34. 3-Wire SPI Connection Diagram

ğ

ADXL345	PROCESSOR	
cs	фd оит	
sdi 🔶	——фроит	
sdo 🔶		
	——Фроит	-

Figure 35. 4-Wire SPI Connection Diagram

CS is the serial port enable line and is controlled by the SPI master. This line must go low at the start of a transmission and high at the end of a transmission, as shown in Figure 37. SCLK is the serial port clock and is supplied by the SPI master. SCLK should idle high during a period of no transmission. SDI and SDO are the serial data input and output, respectively. Data is updated on the falling edge of SCLK and should be sampled on the rising edge of SCLK.

To read or write multiple bytes in a single transmission, the multiple-byte bit, located after the R/W bit in the first byte transfer

(MB in Figure 37 to Figure 39), must be set. After the register addressing and the first byte of data, each subsequent set of clock pulses (eight clock pulses) causes the ADXL345 to point to the next register for a read or write. This shifting continues until the clock pulses cease and \overline{CS} is deasserted. To perform reads or writes on different, nonsequential registers, \overline{CS} must be deasserted between transmissions and the new register must be addressed separately.

The timing diagram for 3-wire SPI reads or writes is shown in Figure 39. The 4-wire equivalents for SPI writes and reads are shown in Figure 37 and Figure 38, respectively. For correct operation of the part, the logic thresholds and timing parameters in Table 9 and Table 10 must be met at all times.

Use of the 3200 Hz and 1600 Hz output data rates is only recommended with SPI communication rates greater than or equal to 2 MHz. The 800 Hz output data rate is recommended only for communication speeds greater than or equal to 400 kHz, and the remaining data rates scale proportionally. For example, the minimum recommended communication speed for a 200 Hz output data rate is 100 kHz. Operation at an output data rate above the recommended maximum may result in undesirable effects on the acceleration data, including missing samples or additional noise.

Preventing Bus Traffic Errors

The ADXL345 $\overline{\text{CS}}$ pin is used both for initiating SPI transactions, and for enabling I²C mode. When the ADXL345 is used on a SPI bus with multiple devices, its $\overline{\text{CS}}$ pin is held high while the master communicates with the other devices. There may be conditions where a SPI command transmitted to another device looks like a valid I²C command. In this case, the ADXL345 would interpret this as an attempt to communicate in I²C mode, and could interfere with other bus traffic. Unless bus traffic can be adequately controlled to assure such a condition never occurs, it is recommended to add a logic gate in front of the SDI pin as shown in Figure 36. This OR gate will hold the SDA line high when $\overline{\text{CS}}$ is high to prevent SPI bus traffic at the ADXL345 from appearing as an I²C start command.

Figure 36. Recommended SPI Connection Diagram when Using Multiple SPI Devices on a Single Bus

Table 9. SPI Digital Input/Output

			Limit ¹	
Parameter	Test Conditions	Min	Max	Unit
Digital Input				
Low Level Input Voltage (VIL)			0.3 × V _{DD I/O}	V
High Level Input Voltage (V _{IH})		0.7 × V _{DD I/O}		V
Low Level Input Current (I _{IL})	V _{IN} = V _{DD I/O}		0.1	μA
High Level Input Current (I _{IH})	V _{IN} = 0 V	-0.1		μA
Digital Output				
Low Level Output Voltage (V _{OL})	I _{OL} = 10 mA		$0.2 \times V_{DD I/O}$	V
High Level Output Voltage (V _{OH})	I _{OH} = −4 mA	$0.8 \times V_{DD I/O}$		V
Low Level Output Current (I _{OL})	V _{OL} = V _{OL, max}	10		mA
High Level Output Current (I _{OH})	V _{OH} = V _{OH, min}		-4	mA
Pin Capacitance	f _{IN} = 1 MHz, V _{IN} = 2.5 V		8	pF

¹ Limits based on characterization results, not production tested.

Table 10. SPI Timing (TA	$= 25^{\circ}C, V_{S} = 2.5$	$V, V_{DD I/O} = 1.8 V$
--------------------------	------------------------------	--------------------------

Limit ^{2, 3}				
Parameter	Min	Max	Unit	Description
f _{SCLK}		5	MHz	SPI clock frequency
t _{SCLK}	200		ns	1/(SPI clock frequency) mark-space ratio for the SCLK input is 40/60 to 60/40
t _{DELAY}	5		ns	CS falling edge to SCLK falling edge
t _{QUIET}	5		ns	SCLK rising edge to \overline{CS} rising edge
t _{DIS}		10	ns	CS rising edge to SDO disabled
t _{CS,DIS}	150		ns	CS deassertion between SPI communications
t _S	0.3 × t _{SCLK}		ns	SCLK low pulse width (space)
t _M	0.3 × t _{SCLK}		ns	SCLK high pulse width (mark)
t _{SETUP}	5		ns	SDI valid before SCLK rising edge
t _{HOLD}	5		ns	SDI valid after SCLK rising edge
t _{SDO}		40	ns	SCLK falling edge to SDO/SDIO output transition
t _R ⁴		20	ns	SDO/SDIO output high to output low transition
t _F 4		20	ns	SDO/SDIO output low to output high transition

¹ The CS, SCLK, SDI, and SDO pins are not internally pulled up or down; they must be driven for proper operation.

² Limits based on characterization results, characterized with f_{SCLK} = 5 MHz and bus load capacitance of 100 pF; not production tested.

 3 The timing values are measured corresponding to the input thresholds (V_{IL} and V_{IH}) given in Table 9.

⁴ Output rise and fall times measured with capacitive load of 150 pF.

Table 11. I²C Digital Input/Output

SERIAL COMMUNICATIONS

1²C

With \overline{CS} tied high to $V_{DD I/O}$, the ADXL345 is in I²C mode, requiring a simple 2-wire connection, as shown in Figure 40. The ADXL345 conforms to the UM10204 I²C-Bus Specification and User Manual, Rev. 03—19 June 2007, available from NXP Semiconductors. It supports standard (100 kHz) and fast (400 kHz) data transfer modes if the bus parameters given in Table 11 and Table 12 are met. Single- or multiple-byte reads/writes are supported, as shown in Figure 41. With the ALT ADDRESS pin high, the 7-bit I^2C address for the device is 0x1D, followed by the R/W bit. This translates to 0x3A for a write and 0x3B for a read. An alternate I^2C address of 0x53 (followed by the R/W bit) can be chosen by grounding the SDO/ALT ADDRESS pin (Pin 12). This translates to 0xA6 for a write and 0xA7 for a read.

There are no internal pull-up or pull-down resistors for any unused pins; therefore, there is no known state or default state for the \overline{CS} or ALT ADDRESS pin if left floating or unconnected. It is required that the \overline{CS} pin be connected to $V_{DD \parallel O}$ and that the ALT ADDRESS pin be connected to either $V_{DD I/O}$ or GND when using I²C.

Due to communication speed limitations, the maximum output data rate when using 400 kHz I²C is 800 Hz and scales linearly with a

change in the I^2C communication speed. For example, using I^2C at 100 kHz would limit the maximum ODR to 200 Hz. Operation at an output data rate above the recommended maximum may result in undesirable effect on the acceleration data, including missing samples or additional noise.

Figure 40. I²C Connection Diagram (Address 0x53)

If other devices are connected to the same I²C bus, the nominal operating voltage level of these other devices cannot exceed VDD I/O by more than 0.3 V. External pull-up resistors, RP, are necessary for proper I²C operation. Refer to the UM10204 I²C-Bus Specification and User Manual, Rev. 03-19 June 2007, when selecting pull-up resistor values to ensure proper operation.

			Limit ¹		
Parameter	Test Conditions	Min	Max	Unit	
Digital Input					
Low Level Input Voltage (VIL)			0.3 × V _{DD I/O}	V	
High Level Input Voltage (V _{IH})		0.7 × V _{DD I/O}		V	
Low Level Input Current (IIL)	V _{IN} = V _{DD I/O}		0.1	μA	
High Level Input Current (I _{IH})	V _{IN} = 0 V	-0.1		μA	
Digital Output					
Low Level Output Voltage (V _{OL})	$V_{DD I/O} < 2 V, I_{OL} = 3 mA$		0.2 × V _{DD I/O}	V	
	V _{DD I/O} ≥ 2 V, I _{OL} = 3 mA		400	mV	
Low Level Output Current (I _{OL})	V _{OL} = V _{OL, max}	3		mA	
Pin Capacitance	f _{IN} = 1 MHz, V _{IN} = 2.5 V		8	pF	

¹ Limits based on characterization results; not production tested.

g

Table 12. I ² C Timing (T	$T_A = 25^{\circ}C, V_S = 2.5$	$V, V_{DD VO} = 1.8 V$
--------------------------------------	--------------------------------	--------------------------

	Lim	it ^{1, 2}			
Parameter	Min	Max	Unit	Description	
f _{SCL}		400	kHz	SCL clock frequency	
t ₁	2.5		μs	SCL cycle time	
t ₂	0.6		μs	t _{HIGH} , SCL high time	
t ₃	1.3		μs	t _{LOW} , SCL low time	
t ₄	0.6		μs	$t_{\text{HD, STA}},$ start/repeated start condition hold time	
t ₅	100		ns	t _{SU, DAT} , data setup time	
t ₆ ^{3, 4, 5, 6}	0	0.9	μs	t _{HD, DAT} , data hold time	
t ₇	0.6		μs	$t_{\text{SU, STA}},$ setup time for repeated start	
t ₈	0.6		μs	s t _{SU, STO} , stop condition setup time	
t ₉	1.3		μs	$t_{\mbox{\scriptsize BUF}},$ bus-free time between a stop condition and a start condition	
t ₁₀		300	ns	$t_{R},$ rise time of both SCL and SDA when receiving	
	0		ns	$t_{R},$ rise time of both SCL and SDA when receiving or transmitting	
t ₁₁		300	ns	$t_{\text{F}}\text{,}$ fall time of SDA when receiving	
		250	ns	$t_{\text{F}}\text{,}$ fall time of both SCL and SDA when transmitting	
C _b		400	pF	Capacitive load for each bus line	

¹ Limits based on characterization results, with f_{SCL} = 400 kHz and a 3 mA sink current; not production tested.

 2 $\,$ All values referred to the V_{IH} and the V_{IL} levels given in Table 11.

 3 t₆ is the data hold time that is measured from the falling edge of SCL. It applies to data in transmission and acknowledge.

- ⁴ A transmitting device must internally provide an output hold time of at least 300 ns for the SDA signal (with respect to V_{IH(min)} of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 5 The maximum t₆ value must be met only if the device does not stretch the low period (t₃) of the SCL signal.
- ⁶ The maximum value for t_6 is a function of the clock low time (t_3) , the clock rise time (t_{10}) , and the minimum data setup time $(t_{5(min)})$. This value is calculated as $t_{6(max)} = t_3 t_{10} t_{5(min)}$.

Figure 42. I²C Timing Diagram

Table 19.

Address					
Hex	Dec	Name	Туре	Reset Value	Description
0x00	0	DEVID	R	11100101	Device ID
0x01 to 0x1C	1 to 28	Reserved			Reserved; do not access
0x1D	29	THRESH_TAP	R/W	00000000	Tap threshold
0x1E	30	OFSX	R/W	00000000	X-axis offset
0x1F	31	OFSY	R/W	0000000	Y-axis offset
0x20	32	OFSZ	R/W	00000000	Z-axis offset
0x21	33	DUR	R/W	00000000	Tap duration
0x22	34	Latent	R/W	0000000	Tap latency
0x23	35	Window	R/W	00000000	Tap window
0x24	36	THRESH_ACT	R/W	00000000	Activity threshold
0x25	37	THRESH_INACT	R/W	0000000	Inactivity threshold
0x26	38	TIME_INACT	R/W	00000000	Inactivity time
0x27	39	ACT_INACT_CTL	R/W	00000000	Axis enable control for activity and inactivity detection
0x28	40	THRESH_FF	R/W	0000000	Free-fall threshold
0x29	41	TIME_FF	R/W	00000000	Free-fall time
0x2A	42	TAP_AXES	R/W	00000000	Axis control for single tap/double tap
0x2B	43	ACT_TAP_STATUS	R	0000000	Source of single tap/double tap
0x2C	44	BW_RATE	R/W	00001010	Data rate and power mode control
0x2D	45	POWER_CTL	R/W	00000000	Power-saving features control
0x2E	46	INT_ENABLE	R/W	0000000	Interrupt enable control
0x2F	47	INT_MAP	R/W	0000000	Interrupt mapping control
0x30	48	INT_SOURCE	R	00000010	Source of interrupts
0x31	49	DATA_FORMAT	R/W	0000000	Data format control
0x32	50	DATAX0	R	0000000	X-Axis Data 0
0x33	51	DATAX1	R	00000000	X-Axis Data 1
0x34	52	DATAY0	R	0000000	Y-Axis Data 0
0x35	53	DATAY1	R	0000000	Y-Axis Data 1
0x36	54	DATAZ0	R	00000000	Z-Axis Data 0
0x37	55	DATAZ1	R	0000000	Z-Axis Data 1
0x38	56	FIFO_CTL	R/W	0000000	FIFO control
0x39	57	FIFO_STATUS	R	0000000	FIFO status

REGISTER DEFINITIONS

Register 0x00—DEVID (Read Only)

Table 20. Register 0x00

D7	D6	D5	D4	D3	D2	D1	D0
1	1	1	0	0	1	0	1

The DEVID register holds a fixed device ID code of 0xE5 (345 octal).

Register 0x1D—THRESH_TAP (Read/Write)

The THRESH_TAP register is eight bits and holds the threshold value for tap interrupts. The data format is unsigned, therefore, the magnitude of the tap event is compared with the value in THRESH_TAP for normal tap detection. The scale factor is 62.5 mg/LSB (that is, 0xFF = 16 g). A value of 0 may result in undesirable behavior if single tap/double tap interrupts are enabled.

Register 0x1E, Register 0x1F, Register 0x20— OFSX, OFSY, OFSZ (Read/Write)

The OFSX, OFSY, and OFSZ registers are each eight bits and offer user-set offset adjustments in twos complement format with a scale factor of 15.6 mg/LSB (that is, 0x7F = 2 g). The value stored in the offset registers is automatically added to the acceleration data, and the resulting value is stored in the output data registers. For additional information regarding offset calibration and the use of the offset registers, refer to the Offset Calibration section.

Register 0x21—DUR (Read/Write)

The DUR register is eight bits and contains an unsigned time value representing the maximum time that an event must be above the THRESH_TAP threshold to qualify as a tap event. The scale factor is 625 μ s/LSB. A value of 0 disables the single tap/ double tap functions.

Register 0x22—Latent (Read/Write)

The latent register is eight bits and contains an unsigned time value representing the wait time from the detection of a tap event to the start of the time window (defined by the window register) during which a possible second tap event can be detected. The scale factor is 1.25 ms/LSB. A value of 0 disables the double tap function.

Register 0x23—Window (Read/Write)

The window register is eight bits and contains an unsigned time value representing the amount of time after the expiration of the latency time (determined by the latent register) during which a second valid tap can begin. The scale factor is 1.25 ms/LSB. A value of 0 disables the double tap function.

Register 0x24—THRESH_ACT (Read/Write)

The THRESH_ACT register is eight bits and holds the threshold value for detecting activity. The data format is unsigned, so the magnitude of the activity event is compared with the value in the THRESH_ACT register. The scale factor is 62.5 mg/LSB. A value of 0 may result in undesirable behavior if the activity interrupt is enabled.

Register 0x25—THRESH_INACT (Read/Write)

The THRESH_INACT register is eight bits and holds the threshold value for detecting inactivity. The data format is unsigned, so the magnitude of the inactivity event is compared with the value in the THRESH_INACT register. The scale factor is 62.5 mg/LSB. A value of 0 may result in undesirable behavior if the inactivity interrupt is enabled.

Register 0x26—TIME_INACT (Read/Write)

The TIME_INACT register is eight bits and contains an unsigned time value representing the amount of time that acceleration must be less than the value in the THRESH_INACT register for inactivity to be declared. The scale factor is 1 sec/LSB. Unlike the other interrupt functions, which use unfiltered data (see the Threshold section), the inactivity function uses filtered output data. At least one output sample must be generated for the inactivity interrupt to be triggered. This results in the function appearing unresponsive if the TIME_INACT register is set to a value less than the time constant of the output data rate. A value of 0 results in an interrupt when the output data is less than the value in the THRESH_INACT register.

Register 0x27—ACT_INACT_CTL (Read/Write)

Table 21. Register 0x27—Bits[D7:D4]

D7	D6	D5	D4					
ACT ac/dc	ACT_X enable	ACT_Y enable	ACT_Z enable					
Table 22. Register 0x27—Bits[D3:D0]								
D3	D2	D1	D0					
INACT ac/dc	INACT_X enable	INACT_Y enable	INACT_Z enable					

ACT AC/DC and INACT AC/DC Bits

A setting of 0 selects dc-coupled operation, and a setting of 1 enables ac-coupled operation. In dc-coupled operation, the current acceleration magnitude is compared directly with THRESH_ACT and THRESH_INACT to determine whether activity or inactivity is detected.

In ac-coupled operation for activity detection, the acceleration value at the start of activity detection is taken as a reference value. New samples of acceleration are then compared to this reference value,

and if the magnitude of the difference exceeds the THRESH_ACT value, the device triggers an activity interrupt.

Similarly, in ac-coupled operation for inactivity detection, a reference value is used for comparison and is updated whenever the device exceeds the inactivity threshold. After the reference value is selected, the device compares the magnitude of the difference between the reference value and the current acceleration with THRESH_INACT. If the difference is less than the value in THRESH_INACT for the time in TIME_INACT, the device is considered inactive and the inactivity interrupt is triggered.

ACT_x Enable Bits and INACT_x Enable Bits

A setting of 1 enables x-, y-, or z-axis participation in detecting activity or inactivity. A setting of 0 excludes the selected axis from participation. If all axes are excluded, the function is disabled. For activity detection, all participating axes are logically OR'ed, causing the activity function to trigger when any of the participating axes exceeds the threshold. For inactivity detection, all participating axes are logically AND'ed, causing the inactivity function to trigger only if all participating axes are below the threshold for the specified time.

Register 0x28—THRESH_FF (Read/Write)

The THRESH_FF register is eight bits and holds the threshold value, in unsigned format, for free-fall detection. The acceleration on all axes is compared with the value in THRESH_FF to determine if a free-fall event occurred. The scale factor is 62.5 mg/LSB. Note that a value of 0 mg may result in undesirable behavior if the free-fall interrupt is enabled. Values between 300 mg and 600 mg (0x05 to 0x09) are recommended.

Register 0x29—TIME_FF (Read/Write)

The TIME_FF register is eight bits and stores an unsigned time value representing the minimum time that the value of all axes must be less than THRESH_FF to generate a free-fall interrupt. The scale factor is 5 ms/LSB. A value of 0 may result in undesirable behavior if the free-fall interrupt is enabled. Values between 100 ms and 350 ms (0x14 to 0x46) are recommended.

Register 0x2A—TAP_AXES (Read/Write)

Table 23.									
D7	D6	D5	D4	D3	D2	D1	D0		
0	0	0	0	Suppress	TAP_X enable	TAP_Y enable	TAP_Z enable		

Suppress Bit

Setting the suppress bit suppresses double tap detection if acceleration greater than the value in THRESH_TAP is present between taps. See the Tap Detection section for more details.

TAP_x Enable Bits

A setting of 1 in the TAP_X enable, TAP_Y enable, or TAP_Z enable bit enables x-, y-, or z-axis participation in tap detection. A setting of 0 excludes the selected axis from participation in tap detection.

Register 0x2B—ACT_TAP_STATUS (Read Only)

Table 24. Register 0x2B

	•						
D7	D6	D5	D4	D3	D2	D1	D0
0	ACT_X source	ACT_Y source	ACT_Z source	Asleep	TAP_X source	TAP_Y source	TAP_Z source

ACT_x Source and TAP_x Source Bits

These bits indicate the first axis involved in a tap or activity event. A setting of 1 corresponds to involvement in the event, and a setting of 0 corresponds to no involvement. When new data is available, these bits are not cleared but are overwritten by the new data. The ACT_TAP_STATUS register should be read before clearing the interrupt. Disabling an axis from participation clears the corresponding source bit when the next activity or single tap/double tap event occurs.

Asleep Bit

A setting of 1 in the asleep bit indicates that the part is asleep, and a setting of 0 indicates that the part is not asleep. This bit toggles only if the device is configured for auto sleep. See the AUTO_SLEEP Bit section for more information on autosleep mode.

Register 0x2C—BW_RATE (Read/Write)

Table 25. Register 0x2C

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	LOW_POWER		R	ate	

LOW_POWER Bit

A setting of 0 in the LOW_POWER bit selects normal operation, and a setting of 1 selects reduced power operation, which has somewhat higher noise (see the Power Modes section for details).

Rate Bits

These bits select the device bandwidth and output data rate (see Table 7 and Table 8 for details). The default value is 0x0A, which translates to a 100 Hz output data rate. An output data rate should be selected that is appropriate for the communication protocol and frequency selected. Selecting too high of an output data rate with a low communication speed results in samples being discarded.

Register 0x2D—POWER_CTL (Read/Write)

Table 26. Register 0x2D

D7	D6	D5	D4	D3	D2	D1 I	D0
0	0	Link	AUTO_SLEEP	Measure	Sleep	Wakeup)

Link Bit

A setting of 1 in the link bit with both the activity and inactivity functions enabled delays the start of the activity function until inactivity is detected. After activity is detected, inactivity detection begins, preventing the detection of activity. This bit serially links the activity and inactivity functions. When this bit is set to 0, the inactivity and activity functions are concurrent. Additional information can be found in the Link Mode section.

When clearing the link bit, it is recommended that the part be placed into standby mode and then set back to measurement mode with a subsequent write. This is done to ensure that the device is properly biased if sleep mode is manually disabled; otherwise, the first few samples of data after the link bit is cleared may have additional noise, especially if the device was asleep when the bit was cleared.

AUTO_SLEEP Bit

If the link bit is set, a setting of 1 in the AUTO_SLEEP bit enables the auto-sleep functionality. In this mode, the ADXL345 auto-matically switches to sleep mode if the inactivity function is enabled and inactivity is detected (that is, when acceleration is below the THRESH_INACT value for at least the time indicated by TIME_IN-ACT). If activity is also enabled, the ADXL345 automatically wakes up from sleep after detecting activity and returns to operation at the output data rate set in the BW_RATE register. A setting of 0 in the AUTO_SLEEP bit disables automatic switching to sleep mode. See the Sleep Bit section for more information on sleep mode.

If the link bit is not set, the AUTO_SLEEP feature is disabled and setting the AUTO_SLEEP bit does not have an impact on device operation. Refer to the Link Bit section or the Link Mode section for more information on utilization of the link feature.

When clearing the AUTO_SLEEP bit, it is recommended that the part be placed into standby mode and then set back to measurement mode with a subsequent write. This is done to ensure that the device is properly biased if sleep mode is manually disabled; otherwise, the first few samples of data after the AUTO_SLEEP bit is cleared may have additional noise, especially if the device was asleep when the bit was cleared.

Measure Bit

A setting of 0 in the measure bit places the part into standby mode, and a setting of 1 places the part into measurement mode. The ADXL345 powers up in standby mode with minimum power consumption.

Sleep Bit

A setting of 0 in the sleep bit puts the part into the normal mode of operation, and a setting of 1 places the part into sleep mode. Sleep mode suppresses DATA_READY, stops transmission of data to FIFO, and switches the sampling rate to one specified by the wakeup bits. In sleep mode, only the activity function can be used. When the DATA_READY interrupt is suppressed, the output data registers (Register 0x32 to Register 0x37) are still updated at the sampling rate set by the wakeup bits (D1:D0).

When clearing the sleep bit, it is recommended that the part be placed into standby mode and then set back to measurement mode with a subsequent write. This is done to ensure that the device is properly biased if sleep mode is manually disabled; otherwise, the first few samples of data after the sleep bit is cleared may have additional noise, especially if the device was asleep when the bit was cleared.

Wakeup Bits

These bits control the frequency of readings in sleep mode as described in Table 27.

Table 27. Frequency of Readings in Sleep Mode

Setting		
D1	D0	Frequency (Hz)
0	0	8
0	1	4
1	0	2
1	1	1

Register 0x2E—INT_ENABLE (Read/Write)

Table 28. Register 0x2E—Bits[D7:D0]

<u> </u>			
D7	D6	D5	D4
DATA_READY	SINGLE_TAP	DOUBLE_TAP	Activity
Table 29. Register	0x2E—Bits[D3:D0]		
D3	D2	D1	D0
Inactivity	FREE FALL	Watermark	Overrun

Setting bits in this register to a value of 1 enables their respective functions to generate interrupts, whereas a value of 0 prevents the functions from generating interrupts. The DATA_READY, watermark, and overrun bits enable only the interrupt output; the functions are always enabled. It is recommended that interrupts be configured before enabling their outputs.

Register 0x2F—INT_MAP (R/W)

Table 30. Register 0x2F—Bits[D7:D4]

D7	D6	D5	D4
DATA_READY	SINGLE_TAP	DOUBLE_TAP	Activity

Table 31. Register 0x2F—Bits[D3:D0]

D3	D2	D1	D0
Inactivity	FREE_FALL	Watermark	Overrun

Any bits set to 0 in this register send their respective interrupts to the INT1 pin, whereas bits set to 1 send their respective interrupts to the INT2 pin. All selected interrupts for a given pin are OR'ed.

Register 0x30—INT_SOURCE (Read Only)

FREE_FALL

Table 32. Register 0x30—Bits[D7:D4]

D7	D6	D5	D4							
DATA_READY	SINGLE_TAP	DOUBLE_TAP	Activity							
Table 33. Register 0x	Table 33. Register 0x30—Bits[D3:D0]									
D3	D2	D1	D0							

Watermark

Overrun

Bits set to 1 in this register indicate that their respective functions have triggered an event, whereas a value of 0 indicates that the corresponding event has not occurred. The DATA_READY, watermark, and overrun bits are always set if the corresponding events occur, regardless of the INT_ENABLE register settings, and are cleared by reading data from the DATAX, DATAY, and DATAZ registers. The DATA_READY and watermark bits may require multiple reads, as indicated in the FIFO mode descriptions in the FIFO section. Other bits, and the corresponding interrupts, are cleared by reading the INT_SOURCE register.

Register 0x31—DATA_FORMAT (Read/Write)

Table 34. Register 0x31

Inactivity

D7	D6	D5	D4	D3	D2	D1	D0
SELF_TEST	SPI	INT_INVERT	0	FULL_RES	Justify	Rar	nge

The DATA_FORMAT register controls the presentation of data to Register 0x32 through Register 0x37. All data, except that for the $\pm 16 \ g$ range, must be clipped to avoid rollover.

SELF_TEST Bit

A setting of 1 in the SELF_TEST bit applies a self-test force to the sensor, causing a shift in the output data. A value of 0 disables the self-test force.

SPI Bit

A value of 1 in the SPI bit sets the device to 3-wire SPI mode, and a value of 0 sets the device to 4-wire SPI mode.

INT_INVERT Bit

A value of 0 in the INT_INVERT bit sets the interrupts to active high, and a value of 1 sets the interrupts to active low.

FULL_RES Bit

When this bit is set to a value of 1, the device is in full resolution mode, where the output resolution increases with the *g* range set by the range bits to maintain a 4 mg/LSB scale factor. When the FULL_RES bit is set to 0, the device is in 10-bit mode, and the range bits determine the maximum *g* range and scale factor.

Justify Bit

A setting of 1 in the justify bit selects left-justified (MSB) mode, and a setting of 0 selects right-justified mode with sign extension.

Range Bits

These bits set the g range as described in Table 35.

Table 35. g Range Setting

Setting			
D1	D0	g Range	
0	0	±2 g	
0	1	±4 g	
1	0	±8 g	
1	1	±16 g	

Register 0x32 to Register 0x37—DATAX0, DATAX1, DATAY0, DATAY1, DATAZ0, DATAZ1 (Read Only)

These six bytes (Register 0x32 to Register 0x37) are eight bits each and hold the output data for each axis. Register 0x32 and Register 0x33 hold the output data for the x-axis, Register 0x34 and Register 0x35 hold the output data for the y-axis, and Register 0x36 and Register 0x37 hold the output data for the z-axis. The output data is twos complement, with DATAx0 as the least significant byte and DATAx1 as the most significant byte, where x represent X, Y, or Z. The DATA_FORMAT register (Address 0x31) controls the format of the data. It is recommended that a multiple-byte read of all registers be performed to prevent a change in data between reads of sequential registers.

Register 0x38—FIFO_CTL (Read/Write)

Table 36. Register 0x38

	J						
D7	D6	D5	D4	D3	D2	D1	D0
FIFO_MOD	E	Trigger			Samples		

FIFO_MODE Bits

These bits set the FIFO mode, as described in Table 37.

Table 37. FIFO Modes

Setting			
D7	D6	Mode	Function
0	0	Bypass	FIFO is bypassed.
0	1	FIFO	FIFO collects up to 32 values and then stops collect- ing data, collecting new data only when FIFO is not full.
1	0	Stream	FIFO holds the last 32 data values. When FIFO is full, the oldest data is overwritten with newer data.
1	1	Trigger	When triggered by the trigger bit, FIFO holds the last data samples before the trigger event and then contin- ues to collect data until full. New data is collected only when FIFO is not full.

Trigger Bit

A value of 0 in the trigger bit links the trigger event of trigger mode to INT1, and a value of 1 links the trigger event to INT2.

Samples Bits

The function of these bits depends on the FIFO mode selected (see Table 38). Entering a value of 0 in the samples bits immediately sets the watermark status bit in the INT_SOURCE register, regardless of which FIFO mode is selected. Undesirable operation may occur if a value of 0 is used for the samples bits when trigger mode is used.

Table 38. Samples Bits Functions

FIFO Mode	Samples Bits Function
Bypass	None.
FIFO	Specifies how many FIFO entries are needed to trigger a watermark interrupt.
Stream	Specifies how many FIFO entries are needed to trigger a watermark interrupt.
Trigger	Specifies how many FIFO samples are retained in the FIFO buffer before a trigger event.

Register 0x39—FIFO_STATUS (Read Only)

Table 39. Register 0x39											
D7	D6	D5	D4	D3	D2	D1	D0				
FIFO_TRIG 0		Entries									

FIFO_TRIG Bit

A 1 in the FIFO_TRIG bit corresponds to a trigger event occurring, and a 0 means that a FIFO trigger event has not occurred.

Entries Bits

These bits report how many data values are stored in FIFO. Access to collect the data from FIFO is provided through the DATAX, DATAY, and DATAZ registers. FIFO reads must be done in burst or multiple-byte mode because each FIFO level is cleared after any read (single- or multiple-byte) of FIFO. FIFO stores a maximum of 32 entries, which equates to a maximum of 33 entries available at any given time because an additional entry is available at the output filter of the device.

APPLICATIONS INFORMATION

POWER SUPPLY DECOUPLING

A 1 μ F tantalum capacitor (C_S) at V_S and a 0.1 μ F ceramic capacitor (C_{I/O}) at V_{DD I/O} placed close to the ADXL345 supply pins is recommended to adequately decouple the accelerometer from noise on the power supply. If additional decoupling is necessary, a resistor or ferrite bead, no larger than 100 Ω , in series with V_S may be helpful. Additionally, increasing the bypass capacitance on V_S to a 10 μ F tantalum capacitor in parallel with a 0.1 μ F ceramic capacitor may also improve noise.

Care should be taken to ensure that the connection from the ADXL345 ground to the power supply ground has low impedance because noise transmitted through ground has an effect similar to noise transmitted through V_S. It is recommended that V_S and V_{DD} $_{I/O}$ be separate supplies to minimize digital clocking noise on the V_S supply. If this is not possible, additional filtering of the supplies, as previously mentioned, may be necessary.

Figure 44. Application Diagram

MECHANICAL CONSIDERATIONS FOR MOUNTING

The ADXL345 should be mounted on the PCB in a location close to a hard mounting point of the PCB to the case. Mounting the ADXL345 at an unsupported PCB location, as shown in Figure 45, may result in large, apparent measurement errors due to undampened PCB vibration. Locating the accelerometer near a hard mounting point ensures that any PCB vibration at the accelerometer is above the accelerometer's mechanical sensor resonant frequency and, therefore, effectively invisible to the accelerometer. Multiple mounting points, close to the sensor, and/or a thicker PCB also help to reduce the effect of system resonance on the performance of the sensor.

Figure 45. Incorrectly Placed Accelerometers

TAP DETECTION

The tap interrupt function is capable of detecting either single or double taps. The following parameters are shown in Figure 46 for a valid single and valid double tap event:

- The tap detection threshold is defined by the THRESH_TAP register (Address 0x1D).
- The maximum tap duration time is defined by the DUR register (Address 0x21).
- ► The tap latency time is defined by the latent register (Address 0x22) and is the waiting period from the end of the first tap until the start of the time window, when a second tap can be detected, which is determined by the value in the window register (Address 0x23).
- ► The interval after the latency time (set by the latent register) is defined by the window register. Although a second tap must begin after the latency time has expired, it need not finish before the end of the time defined by the window register.

Figure 46. Tap Interrupt Function with Valid Single and Double Taps

If only the single tap function is in use, the single tap interrupt is triggered when the acceleration goes below the threshold, as long as DUR has not been exceeded. If both single and double tap functions are in use, the single tap interrupt is triggered when the double tap event has been either validated or invalidated.

Several events can occur to invalidate the second tap of a double tap event. First, if the suppress bit in the TAP_AXES register (Address 0x2A) is set, any acceleration spike above the threshold during the latency time (set by the latent register) invalidates the double tap detection, as shown in Figure 47.

Figure 47. Double Tap Event Invalid Due to High g Event When the Suppress Bit Is Set

A double tap event can also be invalidated if acceleration above the threshold is detected at the start of the time window for the second tap (set by the window register). This results in an invalid double tap at the start of this window, as shown in Figure 48. Additionally, a double tap event can be invalidated if an acceleration exceeds the time limit for taps (set by the DUR register), resulting in an invalid