
FreeRTOS Examples

 }

SemaphoreHandle_t xSemaphore;
vSemaphoreCreateBinary(xSemaphore);
xSemaphoreGiveFromISR(xSemaphore,*pxHigherPriorityTaskWoken);
xSemaphoreTake(xSemaphore, xBlockTime); //time of portMAX_DELAY blocks indefinitely

List of Arduino APIs:
I2C
#include <Wire.h>
Wire.beginTransmission(addr); // Begin a transmission to the I2C servant device with the given address.

// Subsequently, queue bytes for transmission with the write() function
// and transmit them by calling endTransmission().

Wire.write(val); // Writes data from a servant device in response to a request from a
// master, or queues bytes for transmission from a master to servant
// device (in-between calls to beginTransmission() and
// endTransmission()).

Wire.endTransmission(); // Ends a transmission to a servant device that was begun by
// beginTransmission() and transmits the bytes that were queued by
// write().

Wire.requestFrom(addr, num) //Send read request for ‘num’ bytes to device with I2C address ‘addr’

Wire.available() //Is data we’ve asked to read available on the I2C bus? Returns
//how many bytes are available.

Wire.read() // Reads a byte that was transmitted from a servant device to a master
// after a call to requestFrom() or was transmitted from a master to a
// servant. This is a blocking transaction. If a NACK is received, function returns 0.

Note: Only the pins A4 and A5 can be used as I2C pins. It is set automatically by the Wire library. A4 is SDA and A5 is SCL.

I2C example
#include <Wire.h>
void setup()
{
 Wire.begin(); // join i2c bus (address optional for master)
 Serial.begin(9600); // start serial for output
}

void loop()
{
 Wire.requestFrom(2, 6); // request 6 bytes from servant device #2
 while(Wire.available()) // servant may send less than requested
 {
 char c = Wire.read(); // receive a byte as character
 Serial.print(c); // print the character
 }

 delay(500);
}

Analog Read
Uno: operating voltage: 5V, usable pins: A0-A5, bits 10
analogRead(pin) //input is pin number (A0 to A5 on most boards), output is analog value on pin.

Analog Write
Uno: PWM pins 3, 5, 6, 9, 10, 11. PWM frequency 490 Hz (pins 5 and 6: 980 Hz)
analogWrite(pin, value) // pin to write to. value is the duty cycle: between 0 (always off) and 255 (always on)

Digital I/O
pinMode(pin, mode) //mode is INPUT, OUTPUT or INPUT_PULLUP

digitalWrite(pin, value) //Write value HIGH/LOW at GPIO ‘pin’

digitalRead(pin) // Reads the value from a specified digital pin, either HIGH or LOW.

UART/Serial
serial.begin(speed) //initializes the UART to “speed” baud.

serial.read() // returns the first byte of incoming serial data (or -1 if not data is available)

serial.write(buf, len) // buf is an array of characters you wish to send. Len is how many bytes to send

Serial.print(78) gives "78" Serial.print(1.23456) gives "1.23"

Serial.print('N') gives "N" Serial.print("Hello world.") gives "Hello world."

Servo
servo.attach(pin) // Attach the Servo variable to a pin. Note that in Arduino 0016 and earlier,

// the Servo library supports servos on only two pins: 9 and 10.
servo.write(angle) // specifies an angle to write from 0 to 180.

Servo example
#include <Servo.h>
Servo myservo;
void setup()
{
 myservo.attach(9);
 myservo.write(90); // set servo to mid-point
}
void loop() {}

Interrupts

attachInterrupt(digitalPinToInterrupt(pin), ISR,
mode)

ISR: The interrupt service routine to be called.
The function must have no parameters and
must not return anything.

mode: LOW, CHANGE, RISING, FALLING, HIGH

SPI
Default SPI Pins on Arduino UNO: MOSI: GPIO 11; MISO: GPIO 12; CLK: GPIO 13; SS: GPIO 10
 SPI.begin() : Initializes the SPI pins to SS = 1, SCLK = 0 , MOSI = 0;
 SPISettings my_spi_setting(speed, data order, mode):
 my_spi_setting is global that contains the following after execution

speed: integer expressed in Hz
data order: MSBFIRST or LSBFIRST
mode: SPI_MODE0,
SPI_MODE1, SPI_MODE2, and
SPI_MODE3

SPI.beginTransaction(SPI_settings):
Initializes the SPI bus with the settings in SPI_settings

 SPI.endTransaction(): Ends a SPI transaction
receivedVal = SPI.transfer(val): Sends an 8-bit value on the SPI bus. At the same time it reads the value from the
servant and returns the value.

SPI sample code:
#include <SPI.h>

// Example with incompatible SPI devices (i.e they need different SPI_MODE
const int servantAPin = 20;
const int servantBPin = 21;

// set up the speed, data order and data mode
SPISettings settingsA(2000000, MSBFIRST, SPI_MODE1);
SPISettings settingsB(16000000, LSBFIRST, SPI_MODE3);

void setup() {
 // set the Servant Select Pins as outputs and drive them high.
 pinMode (servantAPin, OUTPUT); digitalWrite (servantAPin, HIGH);
 pinMode (servantBPin, OUTPUT); digitalWrite (servantBPin, HIGH);
 SPI.begin();
}

uint8_t stat, val1, val2, result;

void loop() {
 // read three bytes from device A
 SPI.beginTransaction(settingsA); digitalWrite (servantAPin, LOW);
 // reading only, so data sent does not matter
 stat = SPI.transfer(0); val1 = SPI.transfer(0); val2 = SPI.transfer(0);
 digitalWrite (servantAPin, HIGH);
 SPI.endTransaction();
 // if stat is 1 or 2, send val1 or val2 else zero
 if (stat == 1) {
 result = val1;
 } else if (stat == 2) {
 result = val2;
 } else {
 result = 0;
 }
 // send result to device B
 SPI.beginTransaction(settingsB);
 digitalWrite (servantBPin, LOW);
 SPI.transfer(result);
 digitalWrite (servantBPin, HIGH);
 SPI.endTransaction();
}

	List of Arduino APIs:
	I2C
	I2C example

	Analog Read
	Analog Write
	Digital I/O
	UART/Serial
	Servo
	Servo example

	SPI
	SPI sample code:

