FreeRTOS Examples

int main(wvoid)

{
/* Create one of the two tasks. Note that a real application should check
the return value of the xTaskCreate() call to ensure the task was created
successfully. */
xTaskCreate (vTaskl, /* Pointer to the function that implements the task.

"Task 1",/* Text name for the task. This is to facilitate
debugging only. */

1000, /* Stack depth - most small microcontrollers will use
much less stack than this. */

NULL, /* We are not using the task parameter. */

1, /* This task will run at priority 1. */

NULL); /* We are not going to use the task handle. */

/* Create the other task in exactly the same way and at the same priority. */
xTaskCreate(vTask2, "Task 2", 1000, NULL, 1, NULL);

/* Start the scheduler so the tasks start executing. */
vTaskStartScheduler () ;

// Perform an action every 10 ticks.
void vTaskFunction(void * pvParameters)
{

TickType_t xLastWakeTime;

const TickType_t xFrequency = 10;

// Initialise the xLastWakeTime variable with the current time.
xLastWakeTime = xTaskGetTickCount();

for(;5)
{
// Wait for the next cycle.

vTaskDelayUntil(&xLastWakeTime, xFrequency);

// Perform action here.

SemaphoreHandle_ t xSemaphore;

vSemaphoreCreateBinary(xSemaphore) ;
xSemaphoreGiveFromISR (xSemaphore, *pxHigherPriorityTaskWoken) ;

xSemaphoreTake (xSemaphore, xBlockTime); //time of portMAX DELAY blocks indefinitely

/* See if the mutex can be obtained. If the mutex is not available
wait 10 ticks to see if it becomes free. */

if(xSemaphoreTake (xSemaphore, 10) == pdTRUE)

{

/* The mutex was successfully obtained so the shared resource can be
accessed safely. */

/o %

/* RBccess to the shared resource is complete, so the mutex is
returned. */
xSemaphoreGive (xSemaphore) ;

}

else

{

/* The mutex could not be obtained even after waiting 10 ticks, so
the shared resource cannot be accessed. */

List of Arduino APIs:
12C

#include <Wire.h>

Wire.beginTransmission(addr); // Begin a transmission to the 12C servant device with the given address.
// Subsequently, queue bytes for transmission with the write() function
// and transmit them by calling endTransmission().

Wire.write(val); // Writes data from a servant device in response to a request from a
// master, or queues bytes for transmission from a master to servant
// device (in-between calls to beginTransmission() and
// endTransmission()).

Wire.endTransmission(); // Ends a transmission to a servant device that was begun by
// beginTransmission() and transmits the bytes that were queued by

// write().
Wire.requestFrom(addr, num) //Send read request for ‘num’ bytes to device with 12C address ‘addr’

Wire.available() //Is data we’ve asked to read available on the 12C bus? Returns
//how many bytes are available.

Wire.read() // Reads a byte that was transmitted from a servant device to a master
// after a call to requestFrom() or was transmitted from a master to a
// servant. This is a blocking transaction. If a NACK is received, function returns 0.

Note: Only the pins A4 and A5 can be used as 12C pins. It is set automatically by the Wire library. A4 is SDA and A5 is SCL.

12C example
#include <Wire.h>
void setup ()
{
Wire.begin () ; // join i2c bus (address optional for master)
Serial.begin (9600); // start serial for output

void loop ()
{
// request 6 bytes from servant device #2

Wire.requestFrom (2, 6);
) // servant may send less than requested

while (Wire.available
{
char ¢ = Wire.read(); // receive a byte as character
Serial.print (c); // print the character

delay (500);

Analog Read

Uno: operating voltage: 5V, usable pins: AO-A5, bits 10

analogRead(pin)

Analog Write

//input is pin number (AO to A5 on most boards), output is analog value on pin.

Uno: PWM pins 3,5, 6,9, 10, 11. PWM frequency 490 Hz (pins 5 and 6: 980 Hz)
// pin to write to. value is the duty cycle: between 0 (always off) and 255 (always on)

analogWrite(pin, value)

Digital I/0
pinMode(pin, mode)

digitalWrite(pin, value)
digitalRead(pin)

UART/Serial
serial.begin(speed)

serial.read()

serial.write(buf, len)
Serial.print(78) gives "78"

Serial.print('N’') gives "N"

Servo
servo.attach(pin)

servo.write(angle)

Servo example

//mode is INPUT, OUTPUT or INPUT_PULLUP
//Write value HIGH/LOW at GPIO ‘pin’

// Reads the value from a specified digital pin, either HIGH or LOW.

//initializes the UART to “speed” baud.
// returns the first byte of incoming serial data (or -1 if not data is available)
// buf is an array of characters you wish to send. Len is how many bytes to send

Serial.print(1.23456) gives "1.23"

Serial.print("Hello world.") gives "Hello world."

// Attach the Servo variable to a pin. Note that in Arduino 0016 and earlier,
// the Servo library supports servos on only two pins: 9 and 10.
// specifies an angle to write from 0 to 180.

#include <Servo.h>

Servo myservo;

void setup ()

{

myservo.attach(9);

myservo.write (90);

}

// set servo to mid-point

void loop () {1} const byte ledPin = 13;
const by interruptPin = 2;
Interrupts e
attachinterrupt(digitalPinTolnterrupt(pin), ISR,
mode)
ISR: The interrupt service routine to be called. }

The function must have no parameters and

must not return anything.
mode: LOW, CHANGE, RISING, FALLING, HIGH

void loop () {
digitalWrite (ledPin, state);

}

void blink()

state = !state;

SPI1
Default SPI Pins on Arduino UNO:

MOSI: GPIO 11; MISO: GPIO 12; CLK: GPIO 13; SS: GPIO 10

SPl.begin() : Initializes the SPI pins to SS = 1, SCLK = 0, MOSI = 0;

SPISettings my_spi_setting(speed, data order, mode):

my_spi_setting is global that contains the following after execution

speed: integer expressed in Hz
data order: MSBFIRST or LSBFIRST
mode: SPI_MODEOQ,

SPI_MODE1, SPI_MODE2, and

Mode | CPOL | CPHA

SPI_MODE3 0 0 0
1 0 1
2 1 0

SPl.beginTransaction(SPI_settings):
Initializes the SPI bus with the settings in SPI_settings
SPl.endTransaction(): Ends a SPI transaction

CPOL=0 __ L/
SCK cpoL=1—L AT

SS A -
Cycle# D31z ays1e 178y

CPHA=0 mMisozIziyayslsl 1=
MOSIZ 1T Xz {3 ¥ aYsYwe 78)=

Cycle # | R R N SRR
CPHA=1 misoD@ Izl izlslsl 7 el
MOSIzZCK 1 X e X3 X2k XoX 784z

receivedVal = SPI.transfer(val): Sends an 8-bit value on the SPI bus. At the same time it reads the value from the

servant and returns the value.

SPI sample code:
#include <SPI.h>

// Example with incompatible SPI devices (i.e they need different SPI_ MODE

const int servantAPin = 20;
const int servantBPin = 21;

// set up the speed, data order and data mode

SPISettings settingsA (2000000, MSBFIRST, SPI MODEl);
SPISettings settingsB (16000000, LSBFIRST, SPI MODE3) ;

void setup () {

// set the Servant Select Pins as outputs and drive them high.
pinMode (servantAPin, OUTPUT); digitalWrite (servantAPin, HIGH);
pinMode (servantBPin, OUTPUT); digitalWrite (servantBPin, HIGH) ;

SPI.begin();
}

uint8 t stat, vall, val2, result;

void loop () {
// read three bytes from device A
SPI.beginTransaction (settingsA); digitalWrite
// reading only, so data sent does not matter

stat = SPI.transfer (0); vall = SPI.transfer (0);

digitalWrite (servantAPin, HIGH);
SPI.endTransaction () ;

// if stat is 1 or 2, send vall or val2 else zero

if (stat == 1) {

result = vall;

} else if (stat == 2) {
result = val2;

} else {

result = 0;

}

// send result to device B
SPI.beginTransaction (settingsB) ;
digitalWrite (servantBPin, LOW);
SPI.transfer (result);
digitalWrite (servantBPin, HIGH) ;
SPI.endTransaction () ;

(servantAPin, LOW) ;

val2 = SPI.transfer(0);

	List of Arduino APIs:
	I2C
	I2C example

	Analog Read
	Analog Write
	Digital I/O
	UART/Serial
	Servo
	Servo example

	SPI
	SPI sample code:

