
University of Michigan, Computer Science and Engineering Handout 3
EECS 475: Introduction to Cryptography January 23, 2014
Instructor: Prof. Kevin Fu

Homework 2

This homework is due on Monday, February 3, 2014 by 10:39:00AM. There are 25 possible
points. You must submit your homework on paper in lecture. We do not accept emailed or
otherwise electronic submissions (zero points). Late submissions or submissions that do not follow
the strict policies from the syllabus will receive a zero. Please contact the TA well ahead of the
deadline if you have a question about these procedures.

Submit each homework1 problem stapled separately. We will have separate boxes at the front
of the lecture hall for submitting each problem. Points will be deducted for solutions that do not
follow this process. On the front page of each stapled problem, the top right corner must provide
the following items:

• Print your name

• Print your uniqname

• Print the homework-problem number.

Example:

Name: John P. Doe
Uniqname: johnpdoe
Problem: 2-1

If your solution spans multiple pages for a problem, mark the top of each page with your initials.
Some problems contain multiple components. For each component of a problem, write a descriptor
of the component. Points may be deducted if your TA has problems understanding or reading your
solution. In mathematical problems, show all your work. If you receive any key insights from
someone else or some other resource, you must cite that person or resource.

Problem 2-1. Fear Factor (5 pts)

Many cryptosystems will fail if factorization in general of composites becomes computationally
easy/efficient (i.e., polynomial time). In cryptographic systems, the defender of a system will often
find it convenient to generate a composite by first generating a set of primes, then multiplying
to produce a composite of a known factorization. In this way, we can easily compute φ(n) using
one of our standard formulas. Show mathematically that if one can easily compute φ(n), then one
can also easily factor n into its constituent prime factors. That is, construct a polynomial time
algorithm that takes a positive integer as input and produces its prime factorization, after given
an efficient subroutine that can compute φ(n).

1We will distribute our favorite solution for each problem to the class as the “official” solution—this is your chance
to become famous!



Handout 3: Homework 2 2

Problem 2-2. How do I GCD thee? Let me count the ways. (5 pts)

In lecture, we provided the classic recursive definition for computing GCD:

gcd(a, b) = gcd(b, a mod b) accompanied by its base case.

However, it turns out that computing a modular reduction is surprisingly hard for computers
unless the modulus is a power of two. Another way to implement a fast GCD is to avoid modular
reductions entirely and instead focus on bit shifts that represent division by two. We provide a
partial specification of an alternative GCD algorithm:

gcd(a, b) =


· · ·

gcd((a− b)/2, b) if a, b odd
gcd(a/2, b) if a even, b odd
gcd(a, b/2) if a odd, b even

Your task is to complete the specification of this version of GCD that avoids modular arithmetic and
is fast on computer hardware. Implement both versions of GCD and measure their performance.
For instance, one could use the “time” function from time.h. You are free to use other timing
methods and trade suggestions on Piazza on how to measure time (and what time means). You
may not share your code or algorithm. We recommend using C++ with the libgmp big number
library. If you wish to use a different programming language, first get approval from the TAs on
Piazza. We do not provide support for other languages.

The performance measurements should look at an interesting number of bit lengths that increase
exponentially. The x-axis of the graph should be bit length. The y-axis should be performance time
with an approporiate unit of measurement. For instance, look at bit lengths for the a, b arguments
that range from k = 1, 2, 4, 8, 16, ... until you feel you have reached an interesting asymptotic
behavior for the running time. That is, iterate over k, then randomly select inputs of length k bits
to give as input to each algorithm being measured. It’s OK to let a, b have the same bit length for
all tests. Note that the most significant bit of a k-bit number is 1 for unsigned numbers. Kudos for
students who provide error bars in graphs that meaningfully indicate statistical confidence when
taking multiple samples for each bit length k to factor out timing noise on the computer.

Provide your completed specification of this new GCD algorithm, print out your source code, and
provide your performance graph(s). Do not upload to CTools. Readable and elegant code will
receive the most points. Provide at least a few interesting test cases of input in decimal (i.e., pairs
of inputs to GCD) along with the output in decimal. One of the test cases should have at least six
decimal digits for each input. Explain which algorithm runs faster when and why.



Handout 3: Homework 2 3

Problem 2-3. Least common material for relatively bad fashion (5 pts)

Alex, Emily, and Prof. Fu invested in a large number of U-M CSE T-shirts. Alex managed to nab
three shirts: blue, maize, and white. Emily managed to procure five shirts: blue, maize, white,
tie-dye blue/maize, and an XKCD-themed CSE shirt. Prof. Fu found only two shirts: one blue,
one maize. Logically, the staff wear their shirts in strict order. Alex wears blue, maize, white, and
then repeats in that order after laundry. Emily does the same with her five shirts, and Prof. Fu
does the same with his two. Assume that the staff have a seven-day work week and change shirts
each day.

(a) Fashion that

How often will Alex and Emily wear the same color T-shirt during Friday discussion? Provide
an answer measured in days, and explain your reasoning.

(b) In a modular fashion

It’s never a dull moment in EECS 475 because it’s rare for the staff to repeatedly all wear
the same configuration of clothing. Assume that the four-tuple (A,E,K,Day) represents
the fashion configuration of the staff Alex, Emily, and Prof. Fu on a given day. Let the
T-shirts blue, maize, white, tie-dye blue/maize, and XKCD respectively map to identifiers
{0, 1, 2, 3, 4}. Also let the days of the week Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday map to {0, 1, 2, 3, 4, 5, 6} respectively. So if Alex wears maize, Emily wears
XKCD, and Prof. Fu wears blue on a Wednesday then (A,E,K,Day) = (1, 4, 0, 2).

How long can the staff maintain unique fashion schemes before it’s possible for a student to
spot the staff wearing the same clothes on the same day of the week? That is, how many
days maximum can the staff ensure that (A,E,K,Day) does not repeat? Provide an answer
measured in days, and explain your reasoning.

(c) OU812

In an effort to provide better educational experiences, the University has established a Blue
Ribbon Committee to consider an 8-day work week. The number eight was chosen because
CSE faculty demanded a power of two after hearing that peer schools were considering
powers of one. The 8th day will be called Blueday, and classes will run every day. We now
map the days Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday, Blueday
to {0, 1, 2, 3, 4, 5, 6, 7} respectively.

How many days maximum can the staff ensure that (A,E,K,Day) does not repeat on the
same day in this new 8-day work week? Provide an answer measured in days. Explain using
theoretical tools from class why this number is what it is.

Problem 2-4. Inverses and Modular Exponentiation (5 pts)

Do problem 5.3 (page 226) from Stinson. But instead of using the Extended Euclidean Algorithm,
compute inverses using the Euler extension to FLT. Exponentiation should be done with square and
multiply. All steps of exponentiation need to be shown. Show all your work and verify correctness
by showing that the element multiplied by its inverse = 1.

Problem 2-5. Say What? (5 pts)

See Piazza. You know what I meme.


