1 Search in 2D array (55 points)

Let $a_{i,j}, i = 1 \ldots m, j = 1 \ldots n$ be a two-dimensional array that is ordered in every row and every column so that

- $a_{i,j} \leq a_{i+1,j}$ for $1 \leq i \leq m - 1$ and $1 \leq j \leq n$,
- $a_{i,j} \leq a_{i,j+1}$ for $1 \leq i \leq m$ and $1 \leq j \leq n - 1$.

You are presented with two algorithms A_1 and A_2 that search for an element x within the array $a_{i,j}$ (see the next page). Assume that $m \leq n$ for convenience.

(a: 20pts) Prove that both algorithms return the location of x within the array or return not_found if a does not contain x.

(b: 15pts) Let $\phi_k^{[a,x]}(m,n)$ denote the number of $(a[i,j]<x)$ comparisons performed in the algorithm $A_k, k = 1,2$ for input array a (of the size $m \times n$) and element x. Find $\Phi_k(m,n) = \max_{a,x} \phi_k^{[a,x]}(m,n)$ that is the number of comparisons in the worst case for $k = 1,2$.

(c: 10pts) Taking $\Phi_k(m,n)$ as the measure of performance, which algorithm is better to use when $m = n$ for large values of n?

(d: 10pts) Taking $\Phi_k(m,n)$ as the measure of performance, which algorithm is better to use when $m = 5$ for large values of n?
procedure search_A1(array a[1..m,1..n], element x) {
 i = 1;
 j = n;
 while(a[i,j]!=x) {
 if(a[i,j]<x) {
 ++i;
 if(i>m)
 return not_found;
 } else {
 --j;
 if(j<1)
 return not_found;
 }
 }
 return (i,j);
}
procedure search_A2(array a[1..m,1..n], element x) {
 for i=1..m {
 jmin = 1;
 jmax = n;
 do {
 j = (jmin+jmax)/2;
 if (a[i,j] < x) {
 jmin = j+1;
 } else if (a[i,j] > x) {
 jmax = j-1;
 } else {
 // a[i,j]==x
 return (i,j);
 }
 } while(jmin<=jmax);
 }
 return not_found;
}
2 Limits (45 points)

Find the following limits:

(a:15pts)

\[\lim_{n \to \infty} \frac{2^{n+1} + \log n}{n^3} \]

(b:15pts)

\[\lim_{n \to \infty} \frac{2^{n+1}}{3^n + n^5} \]

(c:15pts)

\[\lim_{n \to \infty} \sum_{i=0}^{n} 2^{-n+4} \]