EECS 477. Homework 2.

Due on Thursday $9 / 19 / 2002$ before noon in mailbox labeled 477 in room 2420 EECS

You must show all work to receive credit!

Please read the statement below and sign your name; otherwise, your homework will not be graded. The text of the College of Engineering's Honor Code can be found at http://honor.personal.engin.umich.edu/

I hereby acknowledge that I understand the College of Engineering's Honor Code and have pledged to uphold it and abide by it.

Signature: \qquad

1 Search in 2D array (55 points)

Let $a_{i, j}, i=1 \ldots m, j=1 \ldots n$ be a two-dimensional array that is ordered in every row and every column so that

- $a_{i, j} \leq a_{i+1, j}$ for $1 \leq i \leq m-1$ and $1 \leq j \leq n$,
- $a_{i, j} \leq a_{i, j+1}$ for $1 \leq i \leq m$ and $1 \leq j \leq n-1$.

You are presented with two algorithms A_{1} and A_{2} that search for an element x within the array $a_{i j}$ (see the next page). Assume that $m \leq n$ for convenience.
(a: 20pts) Prove that both algorithms return the location of x within the array or return not_found if a does not contain x.
(b: 15pts) Let $\phi_{k}^{[a, x]}(m, n)$ denote the number of ($\mathrm{a}[\mathrm{i}, \mathrm{j}]<\mathrm{x}$) comparisons performed in the algorithm $A_{k}, k=1,2$ for input array a (of the size $m \times n$) and element x. Find $\Phi_{k}(m, n)=\max _{a, x} \phi_{k}^{[a, x]}(m, n)$ that is the number of comparisons in the worst case for $k=1,2$.
(c: 10pts) Taking $\Phi_{k}(m, n)$ as the measure of performance, which algorithm is better to use when $m=n$ for large values of n ?
(d: 10pts) Taking $\Phi_{k}(m, n)$ as the measure of performance, which algorithm is better to use when $m=5$ for large values of n ?
A_{1} :

```
procedure search_A1(array a[1..m,1..n], element x) {
    i = 1;
    j = n;
    while(a[i,j]!=x) {
        if(a[i,j]<x) {
                    ++i;
            if(i>m)
                    return not_found;
        } else {
                    --j;
                if(j<1)
                    return not_found;
            }
        }
        return (i,j);
}
```

```
A2:
procedure search_A2(array a[1..m,1..n], element x) {
    for i=1..m {
        jmin = 1;
        jmax = n;
        do {
            j = (jmin+jmax)/2;
            if (a[i,j] < x ) {
                jmin = j+1;
            } else if ( a[i,j] > x ) {
                                jmax = j-1;
            } else {
                                    // a[i,j]==x
                                    return (i,j);
                    }
            } while(jmin<=jmax);
        }
        return not_found;
}
```


2 Limits (45 points)

Find the following limits:
(a:15pts)

$$
\lim _{n \rightarrow \infty} \frac{2^{n+1}+\log n}{n^{3}}
$$

(b:15pts)

$$
\lim _{n \rightarrow \infty} \frac{3^{n+1}}{3^{n}+n^{3}}
$$

(c:15pts)

$$
\lim _{n \rightarrow \infty} \sum_{i=0}^{n} 2^{-n+4}
$$

