
EECS 477. HOMEWORK 3.

Due on Thursday 10/3/2002 before noon
in mailbox labeled 477 in room 2420 EECS

You must show all work to receive credit!
Please read the statement below and sign your name;
otherwise, your homework will not be graded. The text
of the College of Engineering’s Honor Code can be found at
http://honor.personal.engin.umich.edu/

I hereby acknowledge that I understand the College of Engineering’s
Honor Code and have pledged to uphold it and abide by it.

Signature:

1. Asymptotics (25pts)

Order the following nine functions in such a way that fk = O(fk+1). Make
sure to replace O by Θ whenever possible, like in the following example:
n = O(n2), n2 = Θ(n2 + log n), n2 + log n = O(n3).

Here are the functions you will need to arrange:

• log(n + 1/n)
• n log n
• log log n
• 2n−log n

• (log n)n

• (5n + log n/n)2(4+log n)

• 3log n−n

• (3 + log n)!
• n3 + (log n)n

1



2 EECS 477. HOMEWORK 3.

2. k-subsets (30pts)

The questions below will refer to the following piece of code that is also
available on the web as a supplement.
void print_subset(vector<unsigned>& s) {

cout << "{ ";
for(int i=0; i<s.size(); ++i)

cout << s[i] << " ";
cout << "}" << endl;

}

void rec_subset(vector<unsigned>& s, int n, int k) {
if(n<k) {

return;
}
if(k==0) {

print_subset(s);
return;

}
s[k-1] = n-1;
rec_subset(s, n-1, k-1);
rec_subset(s, n-1, k);

}

void generate_subsets(int n, int k) {
vector<unsigned> s(k);
rec_subset(s, n, k);

}

A(5pts) Prove that a call to the function generate_subsets(n, k) (0 ≤ k ≤
n) will print all the subsets of {0, . . . , n−1} that contain k elements.

Important: Suppose that we remove printing commands from the body of print_subset(s)
function, so that a call to print_subset(s) takes constant time.
The following questions B through F will assume that.

B(5pts) Let T (n, k) be the running time of a call to rec_subset(s,n,k)
function. Find a recurrence relation for T (n, k). Consider all the
cases satisfying 0 ≤ k ≤ n + 1.

C(5pts) Introduce a new variable T ′(n, k) = T (n, k) + C1 and prove that it
satisfies the following recurrence relation:

T ′(n, k) =


T ′(n− 1, k − 1) + T ′(n, k) when 0 < k ≤ n,
C2 when k = n + 1,
C3 when k = 0.

What choice of the constant C1 will make it work?



EECS 477. HOMEWORK 3. 3

D(5pts) Let C4 = max(C2, C3). Prove by induction that T ′(n, n) ≤ C4(n+1).
E(5pts) Prove by induction that

T ′(n, k) ≤ C4

(
n + 1

k

)
.

F(5pts) Prove that for k ≤ bn/2c we have

T ′(n, k) ≤ 2C4

(
n

k

)
Conclusion Thus, we have proven that

T (n, k) ≤ 2C4

(
n

k

)
− C1 ≤ 2C4

(
n

k

)
,

that is the time per one generated k-subset is constant (when k ≤
bn/2c).

EXTRA(10pts) What happens when bn/2c < k < n? Find an upper bound on the
time per one generated k-subset. Is it O(1)? O(n)? O(k)?



4 EECS 477. HOMEWORK 3.

3. Asymptotics (30pts)

A function t(n) is defined by recurrence relation:

t(n) =

{
a, for n = 1
4t(dn/3e) + bn, for n > 1

A.(15pts) Prove by induction that t(n) is an eventually non-decreasing func-
tion.

B.(15pts) Find the exact order of t(n) in the simplest possible form.



EECS 477. HOMEWORK 3. 5

4. Algorithm analysis (15pts)

Consider an algorithmA that has average-case time complexity O((n log n)2)
and Ω(n log n). For the following statements state whether it could or could
not be true, and justify your answer.

A. A has worst-case time complexity O(n2).

B. A has worst-case time complexity Θ(n).

C. A has average-case time complexity Θ(n2).


