EECS 477. HOMEWORK 3.

Due on Thursday 10/3/2002 before noon in mailbox labeled 477 in room 2420 EECS

You must show all work to receive credit!
Please read the statement below and sign your name; otherwise, your homework will not be graded. The text of the College of Engineering's Honor Code can be found at http://honor.personal.engin.umich.edu/

I hereby acknowledge that I understand the College of Engineering's Honor Code and have pledged to uphold it and abide by it.

Signature: \qquad

1. Asymptotics (25pts)

Order the following nine functions in such a way that $f_{k}=O\left(f_{k+1}\right)$. Make sure to replace O by Θ whenever possible, like in the following example: $n=O\left(n^{2}\right), n^{2}=\Theta\left(n^{2}+\log n\right), n^{2}+\log n=O\left(n^{3}\right)$.

Here are the functions you will need to arrange:

- $\log (n+1 / n)$
- $n \log n$
- $\log \log n$
- $2^{n-\log n}$
- $(\log n)^{n}$
- $(5 n+\log n / n) 2^{(4+\log n)}$
- $3^{\log n-n}$
- $(3+\log n)$!
- $n^{3}+(\log n)^{n}$

2. k-SUBSETS (30PTS)

The questions below will refer to the following piece of code that is also available on the web as a supplement.

```
void print_subset(vector<unsigned>& s) {
    cout << "{ ";
    for(int i=0; i<s.size(); ++i)
        cout << s[i] << " ";
    cout << "}" << endl;
}
void rec_subset(vector<unsigned>& s, int n, int k) {
    if(n<k) {
        return;
    }
    if(k==0) {
        print_subset(s);
        return;
    }
    s[k-1] = n-1;
    rec_subset(s, n-1, k-1);
    rec_subset(s, n-1, k);
}
```

void generate_subsets(int n, int k) \{
vector<unsigned> s(k);
rec_subset (s, n, k);
\}
$\mathrm{A}(5 \mathrm{pts})$ Prove that a call to the function generate_subsets (n, k$)(0 \leq k \leq$ n) will print all the subsets of $\{0, \ldots, n-1\}$ that contain k elements.

Important: Suppose that we remove printing commands from the body of print_subset (s) function, so that a call to print_subset(s) takes constant time. The following questions B through F will assume that.
$\mathrm{B}(5 \mathrm{pts})$ Let $T(n, k)$ be the running time of a call to rec_subset ($\mathrm{s}, \mathrm{n}, \mathrm{k}$) function. Find a recurrence relation for $T(n, k)$. Consider all the cases satisfying $0 \leq k \leq n+1$.
$\mathrm{C}(5 \mathrm{pts})$ Introduce a new variable $T^{\prime}(n, k)=T(n, k)+C_{1}$ and prove that it satisfies the following recurrence relation:

$$
T^{\prime}(n, k)= \begin{cases}T^{\prime}(n-1, k-1)+T^{\prime}(n, k) & \text { when } 0<k \leq n, \\ C_{2} & \text { when } k=n+1, \\ C_{3} & \text { when } k=0 .\end{cases}
$$

What choice of the constant C_{1} will make it work?
$\mathrm{D}(5 \mathrm{pts})$ Let $C_{4}=\max \left(C_{2}, C_{3}\right)$. Prove by induction that $T^{\prime}(n, n) \leq C_{4}(n+1)$. $\mathrm{E}(5 \mathrm{pts})$ Prove by induction that

$$
T^{\prime}(n, k) \leq C_{4}\binom{n+1}{k}
$$

F (5pts) Prove that for $k \leq\lfloor n / 2\rfloor$ we have

$$
T^{\prime}(n, k) \leq 2 C_{4}\binom{n}{k}
$$

Conclusion Thus, we have proven that

$$
T(n, k) \leq 2 C_{4}\binom{n}{k}-C_{1} \leq 2 C_{4}\binom{n}{k},
$$

that is the time per one generated k-subset is constant (when $k \leq$ $\lfloor n / 2\rfloor$).

EXTRA(10pts) What happens when $\lfloor n / 2\rfloor<k<n$? Find an upper bound on the time per one generated k-subset. Is it $O(1) ? O(n) ? O(k)$?

3. Asymptotics (30pts)

A function $t(n)$ is defined by recurrence relation:

$$
t(n)= \begin{cases}a, & \text { for } n=1 \\ 4 t(\lceil n / 3\rceil)+b n, & \text { for } n>1\end{cases}
$$

A.(15pts) Prove by induction that $t(n)$ is an eventually non-decreasing function.
B.(15pts) Find the exact order of $t(n)$ in the simplest possible form.

4. Algorithm analysis (15 pts)

Consider an algorithm \mathcal{A} that has average-case time complexity $O\left((n \log n)^{2}\right)$ and $\Omega(n \log n)$. For the following statements state whether it could or could not be true, and justify your answer.
A. \mathcal{A} has worst-case time complexity $O\left(n^{2}\right)$.
B. \mathcal{A} has worst-case time complexity $\Theta(n)$.
C. \mathcal{A} has average-case time complexity $\Theta\left(n^{2}\right)$.

