
EECS 477. HOMEWORK 2 SOLUTIONS

IGOR GUSKOV

1. Search in 2D array (55 points)

Let ai,j , i = 1 . . .m, j = 1 . . . n be a two-dimensional array that is ordered in
every row and every column so that

• ai,j ≤ ai+1,j for 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n,
• ai,j ≤ ai,j+1 for 1 ≤ i ≤ m and 1 ≤ j ≤ n− 1.

You are presented with two algorithms A1 and A2 that search for an element x
within the array aij (see the next page). Assume that m ≤ n for convenience.

(a: 20pts) Prove that both algorithms return the location of x within the array or
return not_found if a does not contain x.

(b: 15pts) Let φ
[a,x]
k (m,n) denote the number of (a[i,j]<x) comparisons performed

in the algorithm Ak, k = 1, 2 for input array a (of the size m×n) and element
x. Find Φk(m,n) = maxa,x φ

[a,x]
k (m,n) that is the number of comparisons

in the worst case for k = 1, 2.
(c: 10pts) Taking Φk(m,n) as the measure of performance, which algorithm is better

to use when m = n for large values of n?
(d: 10pts) Taking Φk(m,n) as the measure of performance, which algorithm is better

to use when m = 5 for large values of n?

A1:
procedure search_A1(array a[1..m,1..n], element x) {

i = 1;
j = n;
while(a[i,j]!=x) {

if(a[i,j]<x) {
++i;
if(i>m)

return not_found;
} else {

--j;
if(j<1)

return not_found;
}

}
return (i,j);

}
1

2 IGOR GUSKOV

A2:
procedure search_A2(array a[1..m,1..n], element x) {

for i=1..m {
jmin = 1;
jmax = n;
do {

j = (jmin+jmax)/2;
if (a[i,j] < x) {

jmin = j+1;
} else if (a[i,j] > x) {

jmax = j-1;
} else {

// a[i,j]==x
return (i,j);

}
} while(jmin<=jmax);

}
return not_found;

}

Solution:

(a) Correctness of A1: We first prove that the algorithm always returns within
m + n iterations of the while loop, indeed on every iteration the expression
δ(i, j) = i− j is increased by one, so that starting with δ(1, n) = 1− n and
having δ(m, 1) = m − 1 as its overall maximum value in the valid index
range, we can only have m− 1− (1− n) = m + n valid iterations. As soon
as (i, j) is invalid the loop stops.

We now introduce the “discarded region” D(i, j) = {(k, l) : 1 ≥ k <
i or l < j ≤ n}. The first thing we prove is that the discarded region
never contains x. Indeed, the algorithm starts with empty D(1, n). Every
time i or j is changed, it makes sure that the row or column that is thus
added to the discarded region does not contain x (the orderedness of the
array implies that). It is also easy to see that the algorithm always either
decreases j or increases i hence at some point it arrives at one of the two
degenerate situations i > m or j < 1 for which D(i, j) contains the whole
array. Only in these two cases the algorithm correctly returns not found.
Thus if not found is returned, we have proven that the array does not
contain x. On the other hand, if the array does not contain x the while
loop’s condition a[i,j]!=x will always be satisfied, and hence the algorithm
can only return with not found value. (That it will return within finite
number of steps is shown above.) Therefore, not found is returned if and
only if x is not in the array. The only other case not considered so far is
that the algorithm finds x on its way and returns. The above considerations
prove that it does it correctly.

Correctness of A2: The second algorithm consists of running binary
search on every row of the matrix, and thus its correctness is trivial.

(b) A1: it was proven above that φ1(m,n) ≤ m + n and it is easy to see that
the worst case achieves this bound (construct a path that leads from upper
right to lower left corner and fill it with values close to x while everything

EECS 477. HOMEWORK 2 SOLUTIONS 3

above it is much less than x, and everything below that path is much greater
than x). Thus Φ1(m,n) = m + n

A2: performs binary search m times and every binary search takes at
most log n comparisons. Then Φ2(m,n) = m log n.

(c) Taking m = n we get Φ1(n, n) = 2n and Φ2(n, n) = n log n. For large
values of n we have log n > 2 hence the first algorithm is better.

(d) Taking m = 5 we get Φ1(5, n) = n + 5 and Φ2(n, n) = 5 log n. For large
values of n we have 5 log n < n + 5 hence the second algorithm is better.

2. Limits (45 points)

Find the following limits:
(a:15pts)

lim
n→∞

2n+1 + log n

n3
= lim

n→∞

2n+1

n3
+ lim

n→∞

log n

n3
= +∞+ 0 = +∞,

The two limits above can be evaluated using L’Hopital rule:

lim
n→∞

2n+1

n3
= lim

x→∞

2x+1

x3
= lim

x→∞

2(ln 2)32x

6
= +∞.

The second limit appeared in the lecture.
(b:15pts) Differentiating four times we get:

lim
n→∞

3n+1

3n + n3
= lim

x→∞

3x+1

3x + x3
= lim

x→∞

3(ln 3)43x

(ln 3)43x
= 3.

(c:15pts) The below expression had a typo – I will compute both cases, either one
will count towards the grade.

How it was typed

lim
n→∞

n∑
i=0

2−n+4 = 2−n+4 ∗ (n + 1) = 0.

How it was supposed to be

lim
n→∞

n∑
i=0

2−n+4 = 24 ∗ (1 + 1/2 + 1/4 + . . .) = 16 ∗ 2 = 32.

