EECS 477. HOMEWORK 3 (SOLUTIONS)

1. ASYMPTOTICS (25PTS)

Order the following nine functions in such a way that fr = O(fx+1). Make
sure to replace O by © whenever possible, like in the following example:
n = 0(n?),n? = O(n? +logn),n? + logn = O(n?).

Here are the functions you will need to arrange:
log(n +1/n)
nlogn
loglogn
2n—10gn
(log n)"

(5n + log n/n)2(4+oen)

310g n—n

(34 logn)!

n3 + (logn)™

Solution: Let’s use the following notation: A < B when f4 = O(fp), and

A ~ B when fq = ©(fp). We shall use A < B when A < B but not A ~ B.
Then the following ordering holds:

G<C<A<B<F<H<D<FE~I

~EQEEITQW >

2. k-SUBSETS (30PTS)

The questions below will refer to the following piece of code that is also
available on the web as a supplement.

void print_subset(vector<unsigned>& s) {
cout << "{ ";
for(int i=0; i<s.size(); ++i)
cout << s[i] << " ";
cout << "}" << endl;

}

void rec_subset(vector<unsigned>& s, int n, int k) {
if (n<k) {
return;
}
if (k==0) {
print_subset(s);
return;

¥

2 EECS 477. HOMEWORK 3 (SOLUTIONS)

s[k-1] = n-1;
rec_subset(s, n-1, k-1);
rec_subset(s, n-1, k);

}

void generate_subsets(int n, int k) {
vector<unsigned> s(k);
rec_subset(s, n, k);
}
A(5pts) Prove that a call to the function generate_subsets(n, k) (0 < k <
n) will print all the subsets of {0,...,n—1} that contain k elements.

Solution: We shall prove the following statement:

Lemma 1. A single call to the function rec_subset (s, n, k) with
n >0 and k > 0 results in function print_subset being called once
for every possible k-subset of the set {0,...,n — 1} with that subset
elements being contained in the first k elements of the vector s.

We prove this by induction on n: Let S(n) be the statement of
the theorem with some particular fixed non-negative integer n. That
is, S(n) is the statement for a single fixed n and all non-negative k.

Base case: S(0) For n = 0 and k = 0, we return upon checking the condition
of the second if statement, and print_subset is called with
empty set subset trivially in the first zero positions. duh. For
n = 0 and k£ > 0 the function returns upon checking the first if
condition without ever calling print_subset function, just as
it should since there are no nonempty subsets of an empty set.

Induction step: Suppose that the lemma’s statement holds for some n = n’
(note that it would have to hold for all non-negative k). Let’s
prove it for n = n/ + 1. That is, let’s prove that for any non-
negative k the print_subset function will be called once for
every k-subset of {0, ...,n'}. Indeed, for k = 0, there is a single
empty O-subset that will be called right away in the second if
statement and then the function will return. So, the statement
holds for k = 0,n =n’ + 1.

For k > n, the function returns without ever calling print_subset
just as it should.

Now, consider the case for some k such that 0 < k < n. Denote
by B(n', k) the collection of all the k-subsets of {0,...,n'}. It
is easy to see that all the members of B(n’, k) can be split into
two categories: the ones that contain n’ and the ones that do
not. Note that the second category is exactly what we denoted
by B(n’ — 1,k). Also, note that all the subsets of the first
category can be obtained by generating all the k — 1-subsets of

EECS 477. HOMEWORK 3 (SOLUTIONS) 3

{0,...,n'— 1} and adding n’ as a member to all thus generated
subsets. This is exactly what happens in the last three lines of
rec_subset function.
Namely, the first recursive call rec_subset(s, n-1, k-1) will
result in the function print_subset being called once for every
k — 1-subset of {0,...,n" — 1} with that subset represented by
the first & — 1 elements of the vector s (this follows from the
induction assumption). Since we placed n’ as the k-th element
of the vector s, we shall see print_subset being called once for
every k-subset of {0,...,n'} from the first category above with
that subset being placed in the first £ positions of s.
The second recursive call will handle the second category of
k-subsets.
Thus the statement S(n’ 4 1) has been proven.
Thus the lemma is proven as well. Invoking the lemma for n proves
the needed result.

Important: Suppose that we remove printing commands from the body of print_subset (s)
function, so that a call to print_subset(s) takes constant time.
The following questions B through F will assume that.

B(5pts) Let T'(n,k) be the running time of a call to rec_subset(s,n,k)
function. Find a recurrence relation for T'(n, k). Consider all the
cases satisfying 0 < k < n+ 1.

Solution: Here is the recursion:

K, for k=0
T(n,k) = < Ko, for k >n
Ks+T(n—1,k—1)+T(n—1,k), otherwise

C(5pts) Introduce a new variable T'(n, k) = T(n,k) + C1 and prove that

it satisfies the following recurrence relation (there was a typo in
equations below, now it’s fixed):

T'n—1,k—1)+T'(n—1,k) when 0 <k <n,
T'(n, k) =< Cy when k =n + 1,

Cs when k = 0.
What choice of the constant C7 will make it work?

Solution: Add C7; = K3 to both sides of the original recurrence
equations to get

K1 —+ Kg, for k=0
T(n,k)+ K3 = Ko+ K3, for k >n
Ks+Tn—1,k—1)4+ K3+ T(n—1,k), otherwise

The rest is obvious. C; = K3,Cy = Ky + K3,C3 = K1 + K3.

4 EECS 477. HOMEWORK 3 (SOLUTIONS)

D(5pts) Let Cy = max(C2, C3). Prove by induction that 77(n,n) < Cy(n+1).
Solution: Base case is n = 0, for which we get 77(0,0) = C5 < Cj.
Suppose that T'(n,n) < C4(n+1). From recurrence we get T"(n+
Lin+1)=T'(n,n)+T (n,n+1) =T (n,n)+Cy < Cy(n+1)+Csy <
C4(n + 2), which is exactly what we need.
E(5pts) Prove by induction that

T'(n,k) < Cy (” Z 1>.

Solution: Let’s be careful here. The statement M (n) will be: for
all k such that 0 <k <n+ 1 we have T'(n, k) < 04(";?).
Base case is M (0), so that n = 0 for which we get

7(0,0) < Cy = Cy (é)

Induction step assumes that M(n) is true. Let’s prove M(n +
1) based on that. For k& = 0 we have T'(n,0) = C3 < 04("3“2).
Similarly, for k = n+ 2 we have T'(n+ 1,n+2) = Cy < Cy (Zig
required. Consider 0 < k < n + 2 now. We have:

T'(n+1,k) = T'(n, k—1)+7" (1,) < C (” " 1) e (” N 1) e <” N 2)

)as

k—1 k k

Here we used the inductive assumption and the binomial coefficients
property. Thus, M(n + 1) is proven.
F(5pts) Prove that for k < |n/2| we have

T'(n, k) < 204 (’;)
Solution: We know that

T'(n,k) < Cy <”'I: 1).

But (nzl) = (1) + (,",)- Moreover, (,"|) < (}) when k < [n/2].
It follows that

ran <o =a(D)+ (") =2a()).

Conclusion Thus, we have proven that

T(n, k) < 204 (Z) — ¢y < 20, <Z>

that is the time per one generated k-subset is constant (when k <

[n/2]).

EXTRA(10pts) What happens when |[n/2] < k < n? Find an upper bound on the
time per one generated k-subset. Is it O(1)? O(n)? O(k)?

EECS 477. HOMEWORK 3 (SOLUTIONS) 5

Solution: We know that

1
T'(n, k) < c4<“z >

We can use the fact that

n+1\ n+l (n

k) n+l1-k\k
The factor (n +1)/(n + 1 — k) is the upper bound asymptotics of
runtime per single generated subset. We can say that (n+1)/(n +

1— k) =O(n).

3. AsyMPTOTICS (30PTS)

A function t(n) is defined by recurrence relation:

tn) — a, forn=1
(n) = 4t([n/3]) + bn, formn >1

A.(15pts) Prove by induction that ¢(n) is an eventually non-decreasing func-

tion.
Solution: First of all, we will assume that a and b are positive con-
stants throughout this exercise.

We'd like to prove that when n < n' then t(n) < ¢(n').

Let S(n) be the statement: for m and m’ such that 0 < m < m/ <
n we have t(m) < t(m’).

The base case: S(2) is trivial, since ¢(2) = 4a + 2b > a = t(1).

The inductive step: Assume S(n),n > 2. Let’s prove S(n+1). It
is enough to show that ¢(n + 1) > t(n).

Hn + 1) — t(n) = 4(t([(n + 1)/3]) — t([(n)/3]) + b,

from the original recurrence, and 0 < [(n)/3] < [(n+1)/3] < n
since n > 2. It follows from the inductive assumption that ¢([(n + 1)/3]) >
t([(n)/3] so that

t(n+1) —t(n) >0,
which proves everything.

B.(15pts) Find the exact order of ¢(n) in the simplest possible form.
Solution: Using the master theorem we get t(n) = ©(nl°&s4).

6 EECS 477. HOMEWORK 3 (SOLUTIONS)

4. ALGORITHM ANALYSIS (15PTS)

Consider an algorithm A that has average-case time complexity O((n logn)?)
and Q(nlogn). For the following statements state whether it could or could
not be true, and justify your answer.

A. A has worst-case time complexity O(n?).
Solution: Could be.

Let’s cookup an example that will satisfy everything: consider an
algorithm whose running time is always quadratic so that ¢(n) =
O(n?) for any instance of size n. Such algorithms do exist.

Then its average and worst running time will be ©(n?). But surely,
O(n?) c O(n?) and ©(n?) C O((nlogn)?) and O(n?) C Q(nlogn).

B. A has worst-case time complexity ©(n).
Solution: Could not be, because the average case runtime cannot
be slower than the worst case runtime thus we would have to have
taverage(n) = O(n). But then O(n) N Q(nlogn) is an empty set, so
there are no such algorithms.

C. A has average-case time complexity O(n?).
Solution: Could be.

In fact, the example from the part A works again.

