1. Asymptotics (25pts)

Order the following nine functions in such a way that \(f_k = O(f_{k+1}) \). Make sure to replace \(O \) by \(\Theta \) whenever possible, like in the following example:
\[
n = O(n^2), \quad n^2 = \Theta(n^2 + \log n), \quad n^2 + \log n = O(n^3).
\]
Here are the functions you will need to arrange:

A: \(\log(n+1/n) \)
B: \(n \log n \)
C: \(\log\log n \)
D: \(2^{n-\log n} \)
E: \((\log n)^n \)
F: \((5n + \log n/n)2^{(4+\log n)} \)
G: \(3^{\log n-n} \)
H: \((3 + \log n)! \)
I: \(n^3 + (\log n)^n \)

Solution: Let’s use the following notation: \(A \preceq B \) when \(f_A = O(f_B) \), and \(A \sim B \) when \(f_A = \Theta(f_B) \). We shall use \(A \prec B \) when \(A \preceq B \) but not \(A \sim B \).

Then the following ordering holds:
\[
G \prec C \prec A \prec B \prec F \prec H \prec D \prec E \sim I
\]

2. \(k \)-subsets (30pts)

The questions below will refer to the following piece of code that is also available on the web as a supplement.

```cpp
void print_subset(vector<unsigned>& s) {
    cout << "\{ ";
    for(int i=0; i<s.size(); ++i)
    {
        cout << s[i] << " ";
    }
    cout << "\}" << endl;
}

void rec_subset(vector<unsigned>& s, int n, int k) {
    if(n<k) {
        return;
    }
    if(k==0) {
        print_subset(s);
        return;
    }
}
```
The function `generate_subsets(int n, int k)` will print all the subsets of \{0, \ldots, n-1\} that contain \(k\) elements.

Solution: We shall prove the following statement:

Lemma 1. A single call to the function `generate_subsets(n, k)` \((0 \leq k \leq n)\) will print all the subsets of \{0, \ldots, n-1\} that contain \(k\) elements.

We prove this by induction on \(n\): Let \(S(n)\) be the statement of the theorem with some particular fixed non-negative integer \(n\). That is, \(S(n)\) is the statement for a single fixed \(n\) and all non-negative \(k\).

Base case: \(S(0)\) For \(n = 0\) and \(k = 0\), we return upon checking the condition of the second if statement, and `print_subset` is called with empty set subset trivially in the first zero positions. duh. For \(n = 0\) and \(k > 0\) the function returns upon checking the first if condition without ever calling `print_subset` function, just as it should since there are no nonempty subsets of an empty set.

Induction step: Suppose that the lemma’s statement holds for some \(n = n’\) (note that it would have to hold for all non-negative \(k\)). Let’s prove it for \(n = n’ + 1\). That is, let’s prove that for any non-negative \(k\) the `print_subset` function will be called once for every \(k\)-subset of \{0, \ldots, n’\}. Indeed, for \(k = 0\), there is a single empty 0-subset that will be called right away in the second if statement and then the function will return. So, the statement holds for \(k = 0, n = n’ + 1\).

For \(k > n\), the function returns without ever calling `print_subset` just as it should.

Now, consider the case for some \(k\) such that \(0 < k \leq n\). Denote by \(B(n’, k)\) the collection of all the \(k\)-subsets of \{0, \ldots, n’\}. It is easy to see that all the members of \(B(n’, k)\) can be split into two categories: the ones that contain \(n’\) and the ones that do not. Note that the second category is exactly what we denoted by \(B(n’ – 1, k)\). Also, note that all the subsets of the first category can be obtained by generating all the \(k – 1\)-subsets of
\{0, \ldots, n' - 1\} and adding \(n'\) as a member to all thus generated subsets. This is exactly what happens in the last three lines of \texttt{rec_subset} function.

Namely, the first recursive call \texttt{rec_subset(s, n-1, k-1)} will result in the function \texttt{print_subset} being called once for every \(k - 1\)-subset of \(\{0, \ldots, n' - 1\}\) with that subset represented by the first \(k - 1\) elements of the vector \(s\) (this follows from the induction assumption). Since we placed \(n'\) as the \(k\)-th element of the vector \(s\), we shall see \texttt{print_subset} being called once for every \(k\)-subset of \(\{0, \ldots, n'\}\) from the first category above with that subset being placed in the first \(k\) positions of \(s\).

The second recursive call will handle the second category of \(k\)-subsets.

Thus the statement \(S(n' + 1)\) has been proven. Thus the lemma is proven as well. Invoking the lemma for \(n\) proves the needed result.

Important: Suppose that we remove printing commands from the body of \texttt{print_subset(s)} function, so that a call to \texttt{print_subset(s)} takes constant time. The following questions B through F will assume that.

B(5pts) Let \(T(n, k)\) be the running time of a call to \texttt{rec_subset(s,n,k)} function. Find a recurrence relation for \(T(n, k)\). Consider all the cases satisfying \(0 \leq k \leq n + 1\).

Solution: Here is the recursion:

\[
T(n, k) = \begin{cases}
K_1, & \text{for } k = 0 \\
K_2, & \text{for } k > n \\
K_3 + T(n-1, k-1) + T(n-1, k), & \text{otherwise}
\end{cases}
\]

C(5pts) Introduce a new variable \(T'(n, k) = T(n, k) + C_1\) and prove that it satisfies the following recurrence relation (there was a typo in equations below, now it’s fixed):

\[
T'(n, k) = \begin{cases}
T'(n-1, k-1) + T'(n-1, k), & \text{when } 0 < k \leq n, \\
C_2, & \text{when } k = n + 1, \\
C_3, & \text{when } k = 0.
\end{cases}
\]

What choice of the constant \(C_1\) will make it work?

Solution: Add \(C_1 = K_3\) to both sides of the original recurrence equations to get

\[
T(n, k) + K_3 = \begin{cases}
K_1 + K_3, & \text{for } k = 0 \\
K_2 + K_3, & \text{for } k > n \\
K_3 + T(n-1, k-1) + K_3 + T(n-1, k), & \text{otherwise}
\end{cases}
\]

The rest is obvious. \(C_1 = K_3, C_2 = K_2 + K_3, C_3 = K_1 + K_3\).
D(5pts) Let $C_4 = \max(C_2, C_3)$. Prove by induction that $T'(n, n) \leq C_4(n+1)$.

Solution: Base case is $n = 0$, for which we get $T'(0, 0) = C_3 \leq C_4$.

Suppose that $T'(n, n) \leq C_4(n+1)$. From recurrence we get $T'(n+1, n+1) = T'(n, n) + T'(n, n+1) = T'(n, n) + C_2 \leq C_4(n+1) + C_2 \leq C_4(n + 2)$, which is exactly what we need.

E(5pts) Prove by induction that $T'(n, k) \leq C_4 \binom{n+1}{k}$.

Solution: Let’s be careful here. The statement $M(n)$ will be: for all k such that $0 \leq k \leq n + 1$ we have $T'(n, k) \leq C_4 \binom{n+1}{k}$.

Base case is $M(0)$, so that $n = 0$ for which we get $T'(0, 0) = C_3 \leq C_4 \binom{1}{0}$.

Induction step assumes that $M(n)$ is true. Let’s prove $M(n+1)$ based on that. For $k = 0$ we have $T'(n, 0) = C_3 \leq C_4 \binom{n+2}{0}$. Similarly, for $k = n+2$ we have $T'(n+1, n+2) = C_2 \leq C_4 \binom{n+2}{n+2}$ as required. Consider $0 < k < n + 2$ now. We have:

$$T'(n+1, k) = T'(n, k-1) + T'(n, k) \leq C_4 \binom{n+1}{k-1} + C_4 \binom{n+1}{k} = C_4 \binom{n+2}{k}$$

Here we used the inductive assumption and the binomial coefficients property. Thus, $M(n+1)$ is proven.

F(5pts) Prove that for $k \leq \lfloor n/2 \rfloor$ we have

$$T'(n, k) \leq 2C_4 \binom{n}{k}$$

Solution: We know that $T'(n, k) \leq C_4 \binom{n+1}{k}$.

But $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$. Moreover, $\binom{n}{k-1} \leq \binom{n}{k}$ when $k \leq \lfloor n/2 \rfloor$. It follows that

$$T'(n, k) \leq C_4 \binom{n+1}{k} = C_4 \left(\binom{n}{k} + \binom{n}{k-1} \right) \leq 2C_4 \binom{n}{k}.$$

Conclusion Thus, we have proven that

$$T(n, k) \leq 2C_4 \binom{n}{k} - C_1 \leq 2C_4 \binom{n}{k},$$

that is the time per one generated k-subset is constant (when $k \leq \lfloor n/2 \rfloor$).

EXTRA(10pts) What happens when $\lfloor n/2 \rfloor < k < n$? Find an upper bound on the time per one generated k-subset. Is it $O(1)$? $O(n)$? $O(k)$?
Solution: We know that
\[T'(n, k) \leq C_4 \binom{n + 1}{k}. \]

We can use the fact that
\[\binom{n + 1}{k} = \frac{n + 1}{n + 1 - k} \binom{n}{k}. \]

The factor \((n + 1)/(n + 1 - k)\) is the upper bound asymptotics of runtime per single generated subset. We can say that \((n + 1)/(n + 1 - k) = O(n) \).

3. Asymptotics (30pts)

A function \(t(n) \) is defined by recurrence relation:
\[
t(n) = \begin{cases}
a, & \text{for } n = 1 \\ 4t(\lceil n/3 \rceil) + bn, & \text{for } n > 1 \end{cases}
\]

A.(15pts) Prove by induction that \(t(n) \) is an eventually non-decreasing function.

Solution: First of all, we will assume that \(a \) and \(b \) are positive constants throughout this exercise.

We’d like to prove that when \(n \leq n' \) then \(t(n) \leq t(n') \).

Let \(S(n) \) be the statement: for \(m \) and \(m' \) such that \(0 < m \leq m' \leq n \) we have \(t(m) \leq t(m') \).

The base case: \(S(2) \) is trivial, since \(t(2) = 4a + 2b \geq a = t(1) \).

The inductive step: Assume \(S(n), n \geq 2. \) Let’s prove \(S(n + 1) \). It is enough to show that \(t(n + 1) \geq t(n) \).

\[
t(n + 1) - t(n) = 4(t(\lceil (n + 1)/3 \rceil)) - t(\lceil n/3 \rceil) + b,
\]

from the original recurrence, and \(0 < \lceil n/3 \rceil \leq \lceil (n + 1)/3 \rceil \leq n \) since \(n \geq 2 \). It follows from the inductive assumption that \(t(\lceil (n + 1)/3 \rceil) \geq t(\lceil n/3 \rceil) \) so that

\[
t(n + 1) - t(n) \geq 0,
\]

which proves everything.

B.(15pts) Find the exact order of \(t(n) \) in the simplest possible form.

Solution: Using the master theorem we get \(t(n) = \Theta(n^{\log_3 4}). \)
Consider an algorithm A that has average-case time complexity $O((n \log n)^2)$ and $\Omega(n \log n)$. For the following statements state whether it could or could not be true, and justify your answer.

A. A has worst-case time complexity $O(n^2)$.
 Solution: Could be.
 Let’s cook up an example that will satisfy everything: consider an algorithm whose running time is always quadratic so that $t(n) = \Theta(n^2)$ for any instance of size n. Such algorithms do exist.
 Then its average and worst running time will be $\Theta(n^2)$. But surely, $\Theta(n^2) \subset O(n^2)$ and $\Theta(n^2) \subset O((n \log n)^2)$ and $\Theta(n^2) \subset \Omega(n \log n)$.

B. A has worst-case time complexity $\Theta(n)$.
 Solution: Could not be, because the average case runtime cannot be slower than the worst case runtime thus we would have to have $t_{\text{average}}(n) = O(n)$. But then $O(n) \cap \Omega(n \log n)$ is an empty set, so there are no such algorithms.

C. A has average-case time complexity $\Theta(n^2)$.
 Solution: Could be.
 In fact, the example from the part A works again.