EECS 477. HOMEWORK 3 (SOLUTIONS)

1. Asymptotics (25pts)

Order the following nine functions in such a way that $f_{k}=O\left(f_{k+1}\right)$. Make sure to replace O by Θ whenever possible, like in the following example: $n=O\left(n^{2}\right), n^{2}=\Theta\left(n^{2}+\log n\right), n^{2}+\log n=O\left(n^{3}\right)$.

Here are the functions you will need to arrange:
A: $\log (n+1 / n)$
B: $n \log n$
C: $\log \log n$
D: $2^{n-\log n}$
E: $(\log n)^{n}$
F: $(5 n+\log n / n) 2^{(4+\log n)}$
G: $3^{\log n-n}$
H: $(3+\log n)$!
I: $n^{3}+(\log n)^{n}$
Solution: Let's use the following notation: $A \preceq B$ when $f_{A}=O\left(f_{B}\right)$, and $A \sim B$ when $f_{A}=\Theta\left(f_{B}\right)$. We shall use $A \prec B$ when $A \preceq B$ but not $A \sim B$.

Then the following ordering holds:

$$
G \prec C \prec A \prec B \prec F \prec H \prec D \prec E \sim I
$$

2. k-SUBSETS (30PTS)

The questions below will refer to the following piece of code that is also available on the web as a supplement.

```
void print_subset(vector<unsigned>& s) {
    cout << "{ ";
    for(int i=O; i<s.size(); ++i)
        cout << s[i] << " ";
    cout << "}" << endl;
}
```

```
void rec_subset(vector<unsigned>& s, int n, int k) {
```

void rec_subset(vector<unsigned>\& s, int n, int k) {
if(n<k) {
if(n<k) {
return;
return;
}
}
if(k==0) {
if(k==0) {
print_subset(s);
print_subset(s);
return;
return;
}

```
    }
```

```
    s[k-1] = n-1;
    rec_subset(s, n-1, k-1);
    rec_subset(s, n-1, k);
    }
```

```
void generate_subsets(int n, int k) {
    vector<unsigned> s(k);
        rec_subset(s, n, k);
}
```

A(5pts) Prove that a call to the function generate_subsets (n, k) $(0 \leq k \leq$ n) will print all the subsets of $\{0, \ldots, n-1\}$ that contain k elements.

Solution: We shall prove the following statement:
Lemma 1. A single call to the function rec_subset (s, n, k) with $n \geq 0$ and $k \geq 0$ results in function print_subset being called once for every possible k-subset of the set $\{0, \ldots, n-1\}$ with that subset elements being contained in the first k elements of the vector s.

We prove this by induction on n : Let $S(n)$ be the statement of the theorem with some particular fixed non-negative integer n. That is, $S(n)$ is the statement for a single fixed n and all non-negative k.
Base case: $S(0)$ For $n=0$ and $k=0$, we return upon checking the condition of the second if statement, and print_subset is called with empty set subset trivially in the first zero positions. duh. For $n=0$ and $k>0$ the function returns upon checking the first if condition without ever calling print_subset function, just as it should since there are no nonempty subsets of an empty set.
Induction step: Suppose that the lemma's statement holds for some $n=n^{\prime}$ (note that it would have to hold for all non-negative k). Let's prove it for $n=n^{\prime}+1$. That is, let's prove that for any nonnegative k the print_subset function will be called once for every k-subset of $\left\{0, \ldots, n^{\prime}\right\}$. Indeed, for $k=0$, there is a single empty 0 -subset that will be called right away in the second if statement and then the function will return. So, the statement holds for $k=0, n=n^{\prime}+1$.
For $k>n$, the function returns without ever calling print_subset just as it should.
Now, consider the case for some k such that $0<k \leq n$. Denote by $B\left(n^{\prime}, k\right)$ the collection of all the k-subsets of $\left\{0, \ldots, n^{\prime}\right\}$. It is easy to see that all the members of $B\left(n^{\prime}, k\right)$ can be split into two categories: the ones that contain n^{\prime} and the ones that do not. Note that the second category is exactly what we denoted by $B\left(n^{\prime}-1, k\right)$. Also, note that all the subsets of the first category can be obtained by generating all the $k-1$-subsets of
$\left\{0, \ldots, n^{\prime}-1\right\}$ and adding n^{\prime} as a member to all thus generated subsets. This is exactly what happens in the last three lines of rec_subset function.
Namely, the first recursive call rec_subset (s, n-1, k-1) will result in the function print_subset being called once for every $k-1$-subset of $\left\{0, \ldots, n^{\prime}-1\right\}$ with that subset represented by the first $k-1$ elements of the vector s (this follows from the induction assumption). Since we placed n^{\prime} as the k-th element of the vector s, we shall see print_subset being called once for every k-subset of $\left\{0, \ldots, n^{\prime}\right\}$ from the first category above with that subset being placed in the first k positions of s.
The second recursive call will handle the second category of k-subsets.
Thus the statement $S\left(n^{\prime}+1\right)$ has been proven.
Thus the lemma is proven as well. Invoking the lemma for n proves the needed result.
Important: Suppose that we remove printing commands from the body of print_subset (s) function, so that a call to print_subset(s) takes constant time. The following questions B through F will assume that.
$\mathrm{B}(5 \mathrm{pts})$ Let $T(n, k)$ be the running time of a call to rec_subset ($\mathrm{s}, \mathrm{n}, \mathrm{k}$) function. Find a recurrence relation for $T(n, k)$. Consider all the cases satisfying $0 \leq k \leq n+1$.
Solution: Here is the recursion:

$$
T(n, k)= \begin{cases}K_{1}, & \text { for } k=0 \\ K_{2}, & \text { for } k>n \\ K_{3}+T(n-1, k-1)+T(n-1, k), & \text { otherwise }\end{cases}
$$

$\mathrm{C}(5 \mathrm{pts})$ Introduce a new variable $T^{\prime}(n, k)=T(n, k)+C_{1}$ and prove that it satisfies the following recurrence relation (there was a typo in equations below, now it's fixed):
$T^{\prime}(n, k)= \begin{cases}T^{\prime}(n-1, k-1)+T^{\prime}(n-1, k) & \text { when } 0<k \leq n, \\ C_{2} & \text { when } k=n+1, \\ C_{3} & \text { when } k=0 .\end{cases}$
What choice of the constant C_{1} will make it work?
Solution: Add $C_{1}=K_{3}$ to both sides of the original recurrence equations to get

$$
T(n, k)+K_{3}= \begin{cases}K_{1}+K_{3}, & \text { for } k=0 \\ K_{2}+K_{3}, & \text { for } k>n \\ K_{3}+T(n-1, k-1)+K_{3}+T(n-1, k), & \text { otherwise }\end{cases}
$$

The rest is obvious. $C_{1}=K_{3}, C_{2}=K_{2}+K_{3}, C_{3}=K_{1}+K_{3}$.
$\mathrm{D}(5 \mathrm{pts})$ Let $C_{4}=\max \left(C_{2}, C_{3}\right)$. Prove by induction that $T^{\prime}(n, n) \leq C_{4}(n+1)$.
Solution: Base case is $n=0$, for which we get $T^{\prime}(0,0)=C_{3} \leq C_{4}$.
Suppose that $T^{\prime}(n, n) \leq C_{4}(n+1)$. From recurrence we get $T^{\prime}(n+$ $1, n+1)=T^{\prime}(n, n)+T^{\prime}(n, n+1)=T^{\prime}(n, n)+C_{2} \leq C_{4}(n+1)+C_{2} \leq$ $C_{4}(n+2)$, which is exactly what we need.
$\mathrm{E}(5 \mathrm{pts})$ Prove by induction that

$$
T^{\prime}(n, k) \leq C_{4}\binom{n+1}{k}
$$

Solution: Let's be careful here. The statement $M(n)$ will be: for all k such that $0 \leq k \leq n+1$ we have $T^{\prime}(n, k) \leq C_{4}\binom{n+1}{k}$.

Base case is $M(0)$, so that $n=0$ for which we get

$$
T^{\prime}(0,0) \leq C_{4}=C_{4}\binom{1}{0}
$$

Induction step assumes that $M(n)$ is true. Let's prove $M(n+$ 1) based on that. For $k=0$ we have $T^{\prime}(n, 0)=C_{3} \leq C_{4}\binom{n+2}{0}$. Similarly, for $k=n+2$ we have $T^{\prime}(n+1, n+2)=C_{2} \leq C_{4}\binom{n+2}{n+2}$ as required. Consider $0<k<n+2$ now. We have:

$$
T^{\prime}(n+1, k)=T^{\prime}(n, k-1)+T^{\prime}(n, k) \leq C_{4}\binom{n+1}{k-1}+C_{4}\binom{n+1}{k}=C_{4}\binom{n+2}{k}
$$

Here we used the inductive assumption and the binomial coefficients property. Thus, $M(n+1)$ is proven.
$\mathrm{F}(5 \mathrm{pts})$ Prove that for $k \leq\lfloor n / 2\rfloor$ we have

$$
T^{\prime}(n, k) \leq 2 C_{4}\binom{n}{k}
$$

Solution: We know that

$$
T^{\prime}(n, k) \leq C_{4}\binom{n+1}{k}
$$

But $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$. Moreover, $\binom{n}{k-1} \leq\binom{ n}{k}$ when $k \leq\lfloor n / 2\rfloor$. It follows that

$$
T^{\prime}(n, k) \leq C_{4}\binom{n+1}{k}=C_{4}\left(\binom{n}{k}+\binom{n}{k-1}\right) \leq 2 C_{4}\binom{n}{k}
$$

Conclusion Thus, we have proven that

$$
T(n, k) \leq 2 C_{4}\binom{n}{k}-C_{1} \leq 2 C_{4}\binom{n}{k}
$$

that is the time per one generated k-subset is constant (when $k \leq$ $\lfloor n / 2\rfloor)$.

EXTRA(10pts) What happens when $\lfloor n / 2\rfloor<k<n$? Find an upper bound on the time per one generated k-subset. Is it $O(1) ? O(n) ? O(k) ?$

Solution: We know that

$$
T^{\prime}(n, k) \leq C_{4}\binom{n+1}{k}
$$

We can use the fact that

$$
\binom{n+1}{k}=\frac{n+1}{n+1-k}\binom{n}{k}
$$

The factor $(n+1) /(n+1-k)$ is the upper bound asymptotics of runtime per single generated subset. We can say that $(n+1) /(n+$ $1-k)=O(n)$.

3. Asymptotics (30pts)

A function $t(n)$ is defined by recurrence relation:

$$
t(n)= \begin{cases}a, & \text { for } n=1 \\ 4 t(\lceil n / 3\rceil)+b n, & \text { for } n>1\end{cases}
$$

A.(15pts) Prove by induction that $t(n)$ is an eventually non-decreasing function.
Solution: First of all, we will assume that a and b are positive constants throughout this exercise.

We'd like to prove that when $n \leq n^{\prime}$ then $t(n) \leq t\left(n^{\prime}\right)$.
Let $S(n)$ be the statement: for m and m^{\prime} such that $0<m \leq m^{\prime} \leq$ n we have $t(m) \leq t\left(m^{\prime}\right)$.

The base case: $S(2)$ is trivial, since $t(2)=4 a+2 b \geq a=t(1)$.
The inductive step: Assume $S(n), n \geq 2$. Let's prove $S(n+1)$. It is enough to show that $t(n+1) \geq t(n)$.

$$
t(n+1)-t(n)=4(t(\lceil(n+1) / 3\rceil)-t(\lceil(n) / 3\rceil)+b
$$

from the original recurrence, and $0<\lceil(n) / 3\rceil \leq\lceil(n+1) / 3\rceil \leq n$ since $n \geq 2$. It follows from the inductive assumption that $t(\lceil(n+1) / 3\rceil) \geq$ $t(\lceil(n) / 3\rceil$ so that

$$
t(n+1)-t(n) \geq 0
$$

which proves everything.
B. (15pts) Find the exact order of $t(n)$ in the simplest possible form.

Solution: Using the master theorem we get $t(n)=\Theta\left(n^{\log _{3} 4}\right)$.

4. Algorithm analysis (15pts)

Consider an algorithm \mathcal{A} that has average-case time complexity $O\left((n \log n)^{2}\right)$ and $\Omega(n \log n)$. For the following statements state whether it could or could not be true, and justify your answer.
A. \mathcal{A} has worst-case time complexity $O\left(n^{2}\right)$.

Solution: Could be.
Let's cookup an example that will satisfy everything: consider an algorithm whose running time is always quadratic so that $t(n)=$ $\Theta\left(n^{2}\right)$ for any instance of size n. Such algorithms do exist.

Then its average and worst running time will be $\Theta\left(n^{2}\right)$. But surely, $\Theta\left(n^{2}\right) \subset O\left(n^{2}\right)$ and $\Theta\left(n^{2}\right) \subset O\left((n \log n)^{2}\right)$ and $\Theta\left(n^{2}\right) \subset \Omega(n \log n)$.
B. \mathcal{A} has worst-case time complexity $\Theta(n)$.

Solution: Could not be, because the average case runtime cannot be slower than the worst case runtime thus we would have to have $t_{\text {average }}(n)=O(n)$. But then $O(n) \cap \Omega(n \log n)$ is an empty set, so there are no such algorithms.
C. \mathcal{A} has average-case time complexity $\Theta\left(n^{2}\right)$.

Solution: Could be.
In fact, the example from the part A works again.

