
EECS 477. HOMEWORK 3 (SOLUTIONS)

1. Asymptotics (25pts)

Order the following nine functions in such a way that fk = O(fk+1). Make
sure to replace O by Θ whenever possible, like in the following example:
n = O(n2), n2 = Θ(n2 + log n), n2 + log n = O(n3).

Here are the functions you will need to arrange:
A: log(n + 1/n)
B: n log n
C: log log n
D: 2n−log n

E: (log n)n

F: (5n + log n/n)2(4+log n)

G: 3log n−n

H: (3 + log n)!
I: n3 + (log n)n

Solution: Let’s use the following notation: A � B when fA = O(fB), and
A ∼ B when fA = Θ(fB). We shall use A ≺ B when A � B but not A ∼ B.

Then the following ordering holds:

G ≺ C ≺ A ≺ B ≺ F ≺ H ≺ D ≺ E ∼ I

2. k-subsets (30pts)

The questions below will refer to the following piece of code that is also
available on the web as a supplement.
void print_subset(vector<unsigned>& s) {

cout << "{ ";
for(int i=0; i<s.size(); ++i)
cout << s[i] << " ";

cout << "}" << endl;
}

void rec_subset(vector<unsigned>& s, int n, int k) {
if(n<k) {
return;

}
if(k==0) {
print_subset(s);
return;

}
1



2 EECS 477. HOMEWORK 3 (SOLUTIONS)

s[k-1] = n-1;
rec_subset(s, n-1, k-1);
rec_subset(s, n-1, k);

}

void generate_subsets(int n, int k) {
vector<unsigned> s(k);
rec_subset(s, n, k);

}

A(5pts) Prove that a call to the function generate_subsets(n, k) (0 ≤ k ≤
n) will print all the subsets of {0, . . . , n−1} that contain k elements.

Solution: We shall prove the following statement:

Lemma 1. A single call to the function rec_subset(s, n, k) with
n ≥ 0 and k ≥ 0 results in function print_subset being called once
for every possible k-subset of the set {0, . . . , n − 1} with that subset
elements being contained in the first k elements of the vector s.

We prove this by induction on n: Let S(n) be the statement of
the theorem with some particular fixed non-negative integer n. That
is, S(n) is the statement for a single fixed n and all non-negative k.

Base case: S(0) For n = 0 and k = 0, we return upon checking the condition
of the second if statement, and print_subset is called with
empty set subset trivially in the first zero positions. duh. For
n = 0 and k > 0 the function returns upon checking the first if
condition without ever calling print_subset function, just as
it should since there are no nonempty subsets of an empty set.

Induction step: Suppose that the lemma’s statement holds for some n = n′

(note that it would have to hold for all non-negative k). Let’s
prove it for n = n′ + 1. That is, let’s prove that for any non-
negative k the print_subset function will be called once for
every k-subset of {0, . . . , n′}. Indeed, for k = 0, there is a single
empty 0-subset that will be called right away in the second if
statement and then the function will return. So, the statement
holds for k = 0, n = n′ + 1.
For k > n, the function returns without ever calling print_subset
just as it should.
Now, consider the case for some k such that 0 < k ≤ n. Denote
by B(n′, k) the collection of all the k-subsets of {0, . . . , n′}. It
is easy to see that all the members of B(n′, k) can be split into
two categories: the ones that contain n′ and the ones that do
not. Note that the second category is exactly what we denoted
by B(n′ − 1, k). Also, note that all the subsets of the first
category can be obtained by generating all the k − 1-subsets of



EECS 477. HOMEWORK 3 (SOLUTIONS) 3

{0, . . . , n′− 1} and adding n′ as a member to all thus generated
subsets. This is exactly what happens in the last three lines of
rec_subset function.
Namely, the first recursive call rec_subset(s, n-1, k-1) will
result in the function print_subset being called once for every
k − 1-subset of {0, . . . , n′ − 1} with that subset represented by
the first k − 1 elements of the vector s (this follows from the
induction assumption). Since we placed n′ as the k-th element
of the vector s, we shall see print_subset being called once for
every k-subset of {0, . . . , n′} from the first category above with
that subset being placed in the first k positions of s.
The second recursive call will handle the second category of
k-subsets.
Thus the statement S(n′ + 1) has been proven.

Thus the lemma is proven as well. Invoking the lemma for n proves
the needed result.

Important: Suppose that we remove printing commands from the body of print_subset(s)
function, so that a call to print_subset(s) takes constant time.
The following questions B through F will assume that.

B(5pts) Let T (n, k) be the running time of a call to rec_subset(s,n,k)
function. Find a recurrence relation for T (n, k). Consider all the
cases satisfying 0 ≤ k ≤ n + 1.
Solution: Here is the recursion:

T (n, k) =


K1, for k = 0
K2, for k > n

K3 + T (n− 1, k − 1) + T (n− 1, k), otherwise

C(5pts) Introduce a new variable T ′(n, k) = T (n, k) + C1 and prove that
it satisfies the following recurrence relation (there was a typo in
equations below, now it’s fixed):

T ′(n, k) =


T ′(n− 1, k − 1) + T ′(n− 1, k) when 0 < k ≤ n,
C2 when k = n + 1,
C3 when k = 0.

What choice of the constant C1 will make it work?
Solution: Add C1 = K3 to both sides of the original recurrence
equations to get

T (n, k) + K3 =


K1 + K3, for k = 0
K2 + K3, for k > n

K3 + T (n− 1, k − 1) + K3 + T (n− 1, k), otherwise

The rest is obvious. C1 = K3, C2 = K2 + K3, C3 = K1 + K3.



4 EECS 477. HOMEWORK 3 (SOLUTIONS)

D(5pts) Let C4 = max(C2, C3). Prove by induction that T ′(n, n) ≤ C4(n+1).
Solution: Base case is n = 0, for which we get T ′(0, 0) = C3 ≤ C4.

Suppose that T ′(n, n) ≤ C4(n+1). From recurrence we get T ′(n+
1, n+1) = T ′(n, n)+T ′(n, n+1) = T ′(n, n)+C2 ≤ C4(n+1)+C2 ≤
C4(n + 2), which is exactly what we need.

E(5pts) Prove by induction that

T ′(n, k) ≤ C4

(
n + 1

k

)
.

Solution: Let’s be careful here. The statement M(n) will be: for
all k such that 0 ≤ k ≤ n + 1 we have T ′(n, k) ≤ C4

(
n+1

k

)
.

Base case is M(0), so that n = 0 for which we get

T ′(0, 0) ≤ C4 = C4

(
1
0

)
.

Induction step assumes that M(n) is true. Let’s prove M(n +
1) based on that. For k = 0 we have T ′(n, 0) = C3 ≤ C4

(
n+2

0

)
.

Similarly, for k = n + 2 we have T ′(n + 1, n + 2) = C2 ≤ C4

(
n+2
n+2

)
as

required. Consider 0 < k < n + 2 now. We have:

T ′(n+1, k) = T ′(n, k−1)+T ′(n, k) ≤ C4

(
n + 1
k − 1

)
+C4

(
n + 1

k

)
= C4

(
n + 2

k

)
Here we used the inductive assumption and the binomial coefficients
property. Thus, M(n + 1) is proven.

F(5pts) Prove that for k ≤ bn/2c we have

T ′(n, k) ≤ 2C4

(
n

k

)
Solution: We know that

T ′(n, k) ≤ C4

(
n + 1

k

)
.

But
(
n+1

k

)
=

(
n
k

)
+

(
n

k−1

)
. Moreover,

(
n

k−1

)
≤

(
n
k

)
when k ≤ bn/2c.

It follows that

T ′(n, k) ≤ C4

(
n + 1

k

)
= C4(

(
n

k

)
+

(
n

k − 1

)
) ≤ 2C4

(
n

k

)
.

Conclusion Thus, we have proven that

T (n, k) ≤ 2C4

(
n

k

)
− C1 ≤ 2C4

(
n

k

)
,

that is the time per one generated k-subset is constant (when k ≤
bn/2c).

EXTRA(10pts) What happens when bn/2c < k < n? Find an upper bound on the
time per one generated k-subset. Is it O(1)? O(n)? O(k)?



EECS 477. HOMEWORK 3 (SOLUTIONS) 5

Solution: We know that

T ′(n, k) ≤ C4

(
n + 1

k

)
.

We can use the fact that(
n + 1

k

)
=

n + 1
n + 1− k

(
n

k

)
The factor (n + 1)/(n + 1 − k) is the upper bound asymptotics of
runtime per single generated subset. We can say that (n + 1)/(n +
1− k) = O(n).

3. Asymptotics (30pts)

A function t(n) is defined by recurrence relation:

t(n) =

{
a, for n = 1
4t(dn/3e) + bn, for n > 1

A.(15pts) Prove by induction that t(n) is an eventually non-decreasing func-
tion.
Solution: First of all, we will assume that a and b are positive con-
stants throughout this exercise.

We’d like to prove that when n ≤ n′ then t(n) ≤ t(n′).
Let S(n) be the statement: for m and m′ such that 0 < m ≤ m′ ≤

n we have t(m) ≤ t(m′).
The base case: S(2) is trivial, since t(2) = 4a + 2b ≥ a = t(1).
The inductive step: Assume S(n), n ≥ 2. Let’s prove S(n + 1). It

is enough to show that t(n + 1) ≥ t(n).

t(n + 1)− t(n) = 4(t(d(n + 1)/3e)− t(d(n)/3e) + b,

from the original recurrence, and 0 < d(n)/3e ≤ d(n + 1)/3e ≤ n
since n ≥ 2. It follows from the inductive assumption that t(d(n + 1)/3e) ≥
t(d(n)/3e so that

t(n + 1)− t(n) ≥ 0,

which proves everything.
B.(15pts) Find the exact order of t(n) in the simplest possible form.

Solution: Using the master theorem we get t(n) = Θ(nlog3 4).



6 EECS 477. HOMEWORK 3 (SOLUTIONS)

4. Algorithm analysis (15pts)

Consider an algorithmA that has average-case time complexity O((n log n)2)
and Ω(n log n). For the following statements state whether it could or could
not be true, and justify your answer.

A. A has worst-case time complexity O(n2).
Solution: Could be.

Let’s cookup an example that will satisfy everything: consider an
algorithm whose running time is always quadratic so that t(n) =
Θ(n2) for any instance of size n. Such algorithms do exist.

Then its average and worst running time will be Θ(n2). But surely,
Θ(n2) ⊂ O(n2) and Θ(n2) ⊂ O((n log n)2) and Θ(n2) ⊂ Ω(n log n).

B. A has worst-case time complexity Θ(n).
Solution: Could not be, because the average case runtime cannot
be slower than the worst case runtime thus we would have to have
taverage(n) = O(n). But then O(n) ∩ Ω(n log n) is an empty set, so
there are no such algorithms.

C. A has average-case time complexity Θ(n2).
Solution: Could be.

In fact, the example from the part A works again.


