
EECS 477. HOMEWORK 4 SOLUTIONS.

1. Random Graph Generation and Visualization (10pts)

In this assignment you will need to generate random undirected graphs
and visualize them.

First, generate N random points uniformly distributed within the unit
square [0, 1] × [0, 1]. These points will form the vertex set V of your graph
G = (V,E). Then randomly generate edges so that the probability of an
edge connecting two vertices v and v′ is given as:

P ({v, v′} ∈ E) =

{
H, when ρ(v, v′) < D,
HeA(D−ρ(v,v′)) when ρ(v, v′) ≥ D.

Here ρ(v, v′) denotes the Euclidean distance between the points v and v′.
0 ≤ H ≤ 1, A > 0, and D > 0 are constants.

Submit the printout of your algorithm and the graph plots with pa-
rameters set to N = 1000, H = 0.8, A = 25 and different values of
D = 0, D = 0.1, D = 0.5, D = 1. You may use gnuplot for the visual-
ization.
Solution: See the graphs below. The source code is attached in a separate
file.

D = 0.0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

random graph

D = 0.1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

random graph

D = 0.5

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

random graph

D = 1.0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

random graph

1

2 EECS 477. HOMEWORK 4 SOLUTIONS.

2. k-ary heap Dijkstra algorithm(25pts)

Implement Dijkstra algorithm from Section 6.4 (pp.189–202) with k-ary
heap (see Problem 6.16 for the details). You will need to implement your
own k-ary heap functionality (see Problem 5.23). The input graphs for the
Dijkstra algorithm will come from the first part of this homework: you will
use undirected graphs with edge lengths generated randomly so that they
are distributed uniformly in [0, 1].

Submit a printout of your program together with two of example runs on
some simple graphs: assume that the first vertex is the starting one, then
the result will be the distance assignment from that vertex.

Analyze the asymptotic runtime of your algorithm both theoretically and
experimentally. Plot the runtime of the algorithm varying the number of
vertices and edges in your graph (one way to leave the number of edges
approximately constant is to double the number of vertices and at the same
time divide the constant H by four in your graph generation procedure).

Change the value of the heap parameter k between 2 and k′ = max(2, ba/nc)
(do it gradually in ten increments of the size b(k′ − 2)/10c. Do you see the
performance boost as expected from the description in Problem 6.16? Plot
the resulting performance plot (runtime against k) for a graph with the
number of vertices greater than 5,000 and the number of edges greater than
100,000. Try to match your asymptotic analysis and the observed perfor-
mance.
Solution: Two example runs and the code are attached in a separate file.
We shall analyze the runtime of dijkstra function below:

void dijkstra(GraphT& g, int K, vector<float>& d) {
// finds distances for all the points from the origin

vector<bool> cand(g.size(), true);
cand[0] = false;

assert(g.size()==d.size());

for(int i=1; i<d.size(); ++i)
d[i] = 2*INFINITY;

d[0] = 0.0f;

for(int j=0; j<g.nei(0).size(); ++j) {
GraphT::EdgeT& e = g.nei(0)[j];
if(cand[e.dest])

d[e.dest] = min(d[e.dest], d[0]+e.length);
}

vector<int> v(g.size()-1);
vector<int> order(g.size());

EECS 477. HOMEWORK 4 SOLUTIONS. 3

order[0] = -1;

for(int i=1; i<g.size(); ++i) {
v[i-1] = i;
order[i] = i-1;

}

WorseThanPred wpred(d);
make_kheap(v, order, v.size(), wpred, K);
for(int k=v.size(); k>0; --k) {

pop_kheap(v, order, k, wpred, K);
int itop = v[k-1];
cand[itop] = false;
for(int j=0; j<g.nei(itop).size(); ++j) {

GraphT::EdgeT& e = g.nei(itop)[j];
if(cand[e.dest]) {

d[e.dest] = min(d[e.dest], d[itop]+e.length);
percolate_kheap(v, order, order[e.dest], wpred, K);

}
}

}
}

The for(int k=) loop dominates the runtime of the algorithm; within
that loop, we have |V | pop_kheap calls. Additionally, the if(cand[e.dest])
statement will be called twice for every edge and percolate_kheap will be
called once for every edge. The runtime of a single call to pop_kheap is
O(k logk |V |) and a single call to percolate_kheap takes O(logk |V |). Thus
the overall runtime will be T (|V |, |E|, k) = O(|V |k logk |V |+ |E| logk |V |).

First, let’s experiment with the performance keeping k = 2. Here we plot
the runtime changing vertex count keeping edge count the same. We see
roughly linear growth as expected (the effect of the logarithm is not seen).

560

580

600

620

640

660

680

700

720

740

760

1000 2000 3000 4000 5000 6000 7000 8000 9000

'D:\users\igor\teaching\eecs477\hw\vertex-dependence-k2.txt'

4 EECS 477. HOMEWORK 4 SOLUTIONS.

Now let’s plot performance changing edge count keeping vertex count the
same. We see linear growth as expected.

0

100

200

300

400

500

600

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

'D:\users\igor\teaching\eecs477\hw\edge-dependence.txt'

Now let’s plot performance for a fixed graph changing the parameter k of
the heap.

3800

3900

4000

4100

4200

4300

4400

0 100 200 300 400 500 600 700 800 900 1000

'C:\users\igor\teaching\eecs477\hw\pts5Kalpha1000.pts'

Here the ratio α = |E|/|V | is around 1000, so the best parameter will be
obtained by minimizing the function τ(k) = C(k + α)/ log k.

The optimal value will not be achieved at k = α but depending on α
will be closer to zero. Below we plot the function τ(k) for α = 1000 and
see that the overall behavior matches the performance above (although the
minimum is shifted closer to the origin in our implementation).

200

300

400

500

600

700

800

900

1000

100 200 300 400 500 600 700 800 900 1000

(x+1000)/log(x)

EECS 477. HOMEWORK 4 SOLUTIONS. 5

3. Linear inhomogeneous recurrencies (20pts)

Solve the following recurrencies exactly and express your answer as simply
as possible using Θ notation.

A.

t(n) = 5 ∗ t(n− 1)− 4 ∗ t(n− 2) + 3 ∗ 2n,

t(0) = 1,

t(1) = 2.

Solution: First rewrite the equation in the canonical form:

t(n)− 5 ∗ t(n− 1) + 4 ∗ t(n− 2) = 3 ∗ 2n

The characteristic equation is

(x2 − 5x + 4)(x− 2) = 0

The roots are x1 = 1, x2 = 4, and x3 = 2. There are no repeating
roots and so the general solution will have the form

t(n) = A11n + A24n + A32n

Here the first two terms always satisfy the homogeneous equation
(without right hand side), and the last term is used to satisfy the
inhomogeneous equation.

Substitute this into the original equation to get A3 (the terms
with A1 and A2 will disappear, make sure to understand why):

A32n − 5A32n−1 + 4A32n−2 = 32n

It follows that A3 = −6. Thus our solution has the form:

t(n) = A1 + A24n − 62n

We have two unknowns and two additional initial conditions. Sub-
stitute t(n) for n = 0 and 1 to get:

A1 + A2 − 6 = 1
A1 + 4A2 − 12 = 2

so that A1 = 14/3 and A2 = 7/3
Finally, the answer is

t(n) =
14
3

+
7
3
∗ 4n − 6 ∗ 2n.

B.

t(n) = 5 ∗ t(n− 1)− 4 ∗ t(n− 2) + (n + 1) ∗ 4n,

t(0) = 1,

t(1) = 2.

6 EECS 477. HOMEWORK 4 SOLUTIONS.

Solution: First rewrite the equation in the canonical form:

t(n)− 5 ∗ t(n− 1) + 4 ∗ t(n− 2) = (n + 1) ∗ 4n

The characteristic equation is

(x2 − 5x + 4)(x− 4)2 = 0

which is the same as

(x− 1)(x− 4)3 = 0

The roots are x1 = 1, x2,3,4 = 4. The general solution will have
the form

t(n) = A1 + A24n + A3n4n + A4n
24n

Here the first two terms always satisfy the homogeneous equation
(without right hand side), and the last two terms is used to satisfy
the inhomogeneous equation.

Substitute this into the original equation to get A3 = 14/9 and
A4 = 2/3.

Now we know that the solution has the form

t(n) = A1 + A24n +
14
9

n4n +
2
3
n24n,

and now the remaining two coefficients can be found from initial
conditions

A1 + A2 = 1

A1 + 4A2 = −62/9

so that A1 = 98/27 and A2 = −71/27.
The answer is then

t(n) =
98
27

− 71
27

4n +
14
9

n4n +
2
3
n24n.

4. Master theorem (20pts)

Analyze the following recurrencies using the master theorem and express
your answer as simply as possible using Θ notation.

A. t(n) = 4t(n/3) + n2

Solution: f(n) = n2 = Ω(nlog3 4+0.0001) so it’s Case 3 of MT, which
results in t(n) = Θ(n2)

B. t(n) = 4t(n/3) + n
Solution: f(n) = n = O(nlog3 4−0.0001) so it’s Case 1 of MT, which
results in t(n) = Θ(nlog3 4)

C. t(n) = 3t(n/3) + log n
Solution: f(n) = log n = O(nlog3 3−0.0001) = O(n1−0.0001) so it’s
Case 1 of MT, which results in t(n) = Θ(n)

D. t(n) = 2t(n/3) + log n

EECS 477. HOMEWORK 4 SOLUTIONS. 7

Solution: f(n) = log n = O(nlog3 2−0.0001) so it’s Case 1 of MT,
which results in t(n) = Θ(nlog3 2)

5. MST and Union-find (25pts)

A B C

D E

F G

5

1

2

14

3

6

7
8

10

11
4

9

In this part, we will be looking for the minimum spanning tree of the
undirected graph above.

Give the order in which edges will be added to the MST by Prim’s algo-
rithm. Start the algorithm from vertex A.

Repeat for Kruskal’s algorithm.
Show the final configuration of the disjoint set structure tree at the end of

Kruskal’s algorithm (use the disjoint set structure with path compression,
and in case of ties, use the alphabetically larger node as the root).

Solution: Prim’s algorithm order: AB, BD, DE, EG, BC, GF.
Kruskal’s algorithm order:

AB accepted
DE accepted
BD accepted
EG accepted
* AD discarded
BC accepted
* BE discarded
* CE discarded
FG accepted
stop

The disjoint set structure will evolve as follows:
Initially:
abcdefg
ABCDEFG: pointers array

8 EECS 477. HOMEWORK 4 SOLUTIONS.

0000000: ranks

AB accepted
find A, find B, merge AB: B becomes root
abcdefg
BBCDEFG: pointers array
0100000: ranks

DE accepted
find D, find E, merge DE: E becomes root
abcdefg
BBCEEFG: pointers array
0100100: ranks

BD accepted

find B: returns B
abcdefg
BBCEEFG: pointers array
0100100: ranks

find D: returns E
abcdefg
BBCEEFG: pointers array
0100100: ranks

merge B and E: E becomes root
abcdefg
BECEEFG: pointers array
0100200: ranks

EG accepted
find E: returns E
abcdefg
BECEEFG: pointers array
0100200: ranks

find G: returns G
abcdefg
BECEEFG: pointers array
0100200: ranks

merge E and G: E becomes root
abcdefg
BECEEFE: pointers array
0100200: ranks

* AD discarded

EECS 477. HOMEWORK 4 SOLUTIONS. 9

find A: returns E, compresses path ABE
abcdefg
EECEEFE: pointers array
0100200: ranks

find D: returns E
abcdefg
EECEEFE: pointers array
0100200: ranks

BC accepted
find B: returns E
abcdefg
EECEEFE: pointers array
0100200: ranks

find C: returns C
abcdefg
EECEEFE: pointers array
0100200: ranks

merge E and C: E becomes root
abcdefg
EEEEEFE: pointers array
0100200: ranks

* BE discarded
find B: returns B
find E: returns E
abcdefg
EEEEEFE: pointers array
0100200: ranks

* CE discarded
find C: returns E
find E: returns E
abcdefg
EEEEEFE: pointers array
0100200: ranks

FG accepted
find F: returns F
abcdefg
EEEEEFE: pointers array
0100200: ranks

find G: returns E
abcdefg

10 EECS 477. HOMEWORK 4 SOLUTIONS.

EEEEEFE: pointers array
0100200: ranks

merge F and E: E is a root again

abcdefg
EEEEEEE: pointers array
0100200: ranks

STOP

