
EECS 477. HOMEWORK 5 SOLUTIONS.

1. Selection with pseudomedian (20pts)

In this problem we ask you to perform analysis of the selection algorithm.
We know that when the chunk size 5 is used, the runtime of the algorithm
in the worst case is Θ(n) where n is the size of the input array. Replicate
the analysis of section 7.5 as much as you can when the chunk size is equal
to 3. Repeat with the chunk size equal to 7. What is the worst runtime
asymptotics in these two cases?

You may use the following recursive version of the algorithm in your
analysis.
float rec_selection(A, i, j, s) {

unsigned p = pseudo_median(A, i, j);
pair<unsigned, unsigned> kl = pivot(A, i, j);
unsigned k = kl.first, l = kl.second;
if(s<=k)

return rec_selection(A, i, k, s);
else if(s>=l)

return rec_selection(A, k, j, s);
else

return p;
}

float pseudo_median(A, i, j) {
unsigned n = j-i+1; // num of elements in the range
if(n<=CHUNK_SIZE)

return adhoc_median(A, i, j);
unsigned nz = n/CHUNK_SIZE+1;
vector<float> Z(nz);
for(int k=0; k<nz; ++k)

Z[k] = adhoc_median(A, i + CHUNK_SIZE*k,
i+CHUNK_SIZE*k+CHUNK_SIZE-1);

return rec_selection(Z, nz/2);
}

Solution. From the above code we can figure out the recurrence relation for
the runtime of rec_selection procedure on input of length n when the
chunk size is equal to H = 2h− 1 where h is a positive integer.

T (n) ≤ Cn + T (bn/Hc+ 1) + max

{
T (m)|m ≤ (3h− 2)n + h(2h− 2)

2(2h− 1)

}
1

2 EECS 477. HOMEWORK 5 SOLUTIONS.

Consider h = 2 (that is chunk size 3).

(1) T (n) ≤ Cn + T (bn/3c+ 1) + max
{

T (m)|m ≤ 2n + 2
3

}
It is no longer true that T (n) ≤ Kn however we can prove that T (n) ≤
Kn log n. Without going into the details, the induction step works by sub-
stituting the T (m) ≤ Km log m into the right hand side of the recurrence
inequality (1):

T (n) ≤ Kn log n + Cn +
4
3
K log n + KA−K[log 3− 2

3
log 2]n

In order to obtain the above we did need to use the following important
inequality

log(n + α) ≤ log n +
α

n ln 2
.

One can that this is true since log(n + α)− log n = log(1 + α/n), and then
the whole logarithm curve lies beneath a straight line with an appropriate
slope.

It is clear that by making K big we can make the last negative term
dominate all the other ones except for Kn log n so that we get

T (n) ≤ Kn log n,

for some large fixed K and for all sufficiently large n.
Now, for h = 4 (that is chunk size 7), the arguments proving T (n) ≤ Kn

go through, so that we get

T (n) ≤ Cn + T ((n + 7)/7) + max{T (m)|m ≤ (5n + 12)/7}.

Then in the inductive step we get T (n) ≤ 19/7 + (C + 6K/7)n so that
there is a fixed large K such that T (n) ≤ Kn.

In order to get full credit you would need to show that the linear runtime
argument works for chunksize 7 and does not work for chunksize 3. The
n log n result for chunksize 3 is extra.

2. Knapsack (20pts)

Solve problem 9.54 from the book.
Solution. Denoting by V [i, w] the optimal solution with only the first i types
of objects and bound of w, we can distinguish two kinds of optimal collec-
tions: ones containing objects of type i and ones that do not. This brings
us the following optimality principle:

V [i, w] = max{V [i− 1, w], V [i, w − wi] + vi}.

Then the table is built like this:

EECS 477. HOMEWORK 5 SOLUTIONS. 3

bound
0 1 2 3 4 5 6 7 8 9 10 weight value
0 0 1 1 2 2 3 3 4 4 5 2 1
0 0 1 3 3 4 6 6 7 9 9 3 3
0 0 1 3 5 5 6 8 10 10 11 4 5
0 0 1 3 5 5 6 9 10 10 12 7 9

The branch and bound trace would look something like that below:
Items are chosen in non-increasing value per unit weight order which
coincidentally is also non-increasing weight order.
Notation:([chosen item weights], current_value, <=current_bound)
start:([],0, <=90/7)
choose 7
([7],9, <=9 + 3*9/7=90/7)
best value 9
choose 3
([7+3],9+3=12, <=12)
best value 12
backtrack
choose 2
([7+2],9+1=10, <=10+1/2 = 10.5) bound worse than known best
cull the branch
backtrack
backtrack
choose 4
([4],5,<=5+6*5/4=12.5
choose 4
([4+4], 10, <=12.5
choose 2
[4,4,2], 5+5+1=11,<=11
best is still the same as before
backtrack
backtrack
choose 3
[4,3],8, <=8+3*1=11 worse than known
cull
backtrack
choose 2
[4,2], 6, <=8 worse than known
backtrack
backtrack
choose 3
[3], 3, <= 4+7*1 = 10 worse than known
cull
backtrack

4 EECS 477. HOMEWORK 5 SOLUTIONS.

choose 2
[2], 1, <= 1+8*1/2=5 worse than known
cull
backtrack
END: optimal is [7+3] with value 12.

3. Floyd’s algorithm (20pts)

3

4 2

12

71

3

5

3

A
B

C

D

E

For the directed graph above compute the matrix of shortest path dis-
tances using Floyd’s method; show all the intermediate matrices.

Matrices shown below:
0 ∞ ∞ 3 ∞
3 0 ∞ ∞ 7
4 2 0 ∞ 3
∞ 12 1 0 5
∞ ∞ ∞ ∞ 0

0 ∞ ∞ 3 ∞
3 0 ∞ 6 7
4 2 0 7 3
∞ 12 1 0 5
∞ ∞ ∞ ∞ 0

0 ∞ ∞ 3 ∞
3 0 ∞ 6 7
4 2 0 7 3
15 12 1 0 5
∞ ∞ ∞ ∞ 0

0 ∞ ∞ 3 ∞
3 0 ∞ 6 7
4 2 0 7 3
5 3 1 0 4
∞ ∞ ∞ ∞ 0

0 6 4 3 7
3 0 7 6 7
4 2 0 7 3
5 3 1 0 4
∞ ∞ ∞ ∞ 0

0 6 4 3 7
3 0 7 6 7
4 2 0 7 3
5 3 1 0 4
∞ ∞ ∞ ∞ 0

4. Coins (20pts)

(A) Apply the dynamic programming algorithm to the problem of paying
$17 within the system of coinage with coins in denominations $1, $4,
$7 available. Fill the table, and get the answer.

EECS 477. HOMEWORK 5 SOLUTIONS. 5

Solution. The optimality principle is

V [i, s] = min{V [i− 1, s], V [i, s− di] + 1}.
The table is as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
$1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
$4 0 1 2 3 1 2 3 4 2 3 4 5 3 4 5 6 4 5
$7 0 1 2 3 1 2 3 1 2 3 4 2 3 4 2 3 4 5

The possible optimal solutions then could be 1+4+4+4+4, 1+
1 + 1 + 7 + 7, 1 + 1 + 4 + 4 + 7.

(B) Write pseudocode for the recursive version of dynamic programming
coin payment algorithm that uses a memory function.
//initialize mtab to -1 at first

int coin(int i, int s) {
if(s<0 OR i<1)

return +INFINITY;
if(s==0)

return 0;
if(mtab[i,s]<0) {

mtab[i,s] = max(coin(i-1,s), coin(i,s-d[i])+1);
}
return mtab[i,s];

}

6 EECS 477. HOMEWORK 5 SOLUTIONS.

5. DFS(20pts)

A

C

E

H

D

B

F

K
J

G

I

For the graph above perform depth-first search starting with vertex A and
draw the corresponding spanning tree (together with the remaining graph
edges as dashed lines). Index the graph nodes as in preorder traversal. Find
the highest index for every vertex as defined in the book (page 297). Find
the articulation points using criteria from the book.

A,1,1

C,4,1

E,5,4

H,6,4

D,3,1

B,2,1

F,7,6

K,8,6

J,11,6

G,9,6

I,10,6

EECS 477. HOMEWORK 5 SOLUTIONS. 7

6. EXTRA 20 pts

Do problem 7.38 from the book.
The code below does it.

void tour_even(int i, int j, vector< vector< int > >& days) {
int n = j-i;

if(n<=1)
return;

assert(n%2==0);

int half = n/2;

vector< vector< int > > days_left, days_right;
if(half%2==0) {

tour_even(i, i+half, days_left);
tour_even(i+half, j, days_right);

for(int k=0; k<days_left.size(); ++k) {
days.push_back(vector<int>());
days.back().insert(days.back().end(),

days_left[k].begin(), days_left[k].end());
days.back().insert(days.back().end(),

days_right[k].begin(), days_right[k].end());
}

for(int k=0; k<half; ++k) {
days.push_back(vector<int>(n, -1));
for(int s=0; s<half; ++s) {
int ss = (s+half-k)%half;
days.back()[ss] = i+half+s;
days.back()[half+s] = i+ss;

}
}

} else {
tour_odd(i, i+half, days_left);
tour_odd(i+half, j, days_right);

for(int k=days_left.size()-1; k>=0; --k) {
days.push_back(vector<int>());
int kk = days_left.size()-1-k;
days_left[k][kk] = i+half+kk;
days_right[k][kk] = i+kk;
days.back().insert(days.back().end(),

8 EECS 477. HOMEWORK 5 SOLUTIONS.

days_left[k].begin(), days_left[k].end()-1);
days.back().insert(days.back().end(),

days_right[k].begin(), days_right[k].end()-1);
}

for(int k=(half==1 ? 0 : 1); k<half; ++k) {
days.push_back(vector<int>(n, -1));
for(int s=0; s<half; ++s) {
int ss = (s+half-k)%half;
days.back()[ss] = i+half+s;
days.back()[half+s] = i+ss;

}
}

}
}

void tour_odd(int i, int j, vector< vector< int > >& days) {
if(j-i<=1)
return;

tour_even(i, j+1, days);
for(int d=0; d<days.size(); ++d)
days[d][days.size()-1-d] = -1;

}

int main(int argc, char* argv[]) {
if(argc<2)
return -1;

int n = atoi(argv[1]);
cerr << "tournament with " << n << " players" << endl;
vector< vector< int > > days;
if(n%2==0)
tour_even(0, n, days);

else
tour_odd(0, n, days);

for(int d=0; d<days.size(); ++d) {
for(int i=0; i<days[d].size(); ++i)

cerr << days[d][i] << " ";
cerr << endl;

}
return 0;

}

