Final overview

EECS 477
Lecture 24, 12/10/2002

Asymptotic notation

- $O(n)$, $\Omega(n)$, $\Theta(n)$
 - Know them by heart
- Average, best, and worst performance
- Elementary operations
- Lower bounds and upper bounds
- Problems, algorithms, instances
- Barometers, simple control structures
Recurrences

- Recursion, divide and conquer
- Inhomogeneous recurrence
 - General form of solution
 - Taking care of the RHS and initial conditions
 - Multiple roots of characteristic equation
 - Transformations
 - Change of variable
 - Change of range

Master Theorem

- \(T(n) = a \ T(n/b) + f(n) \)
- Three cases
 - \(f(n) = O(n^{\log_b a - \epsilon}) \) then \(T(n) = \Theta(n^{\log_b a}) \)
 - \(f(n) = \Theta(n^{\log_b a - \epsilon}) \) then \(T(n) = \Theta(n^{\log_b a \log n}) \)
 - \(f(n) = \Omega(n^{\log_b a + \epsilon}) \) (and if \(af(n/b) \leq cf(n) \) for some constant \(c < 1 \)) then \(T(n) = \Theta(f(n)) \)
- If `<=` then can claim \(O \) result
- There are gaps in the theorem
Data structures

- Heaps (various)
- Disjoint sets
- Trees
- Hash tables
- Vectors and other simple ones

Graphs

- Complete, connected, strongly connected, articulation points, spanning trees, paths, cycles, DAGs
- Two simple traversals
 - DFS, BFS: What is runtime asymptotics?
- Two representations
- Two parameters
Graphs with edge weights

- MST: $O(E \log V)$
 - Kruskal: shortest edges first
 - Prim: grow a tree
- Dijkstra: $O((A+N) \log N)$ or $O(N^2)$
 - Shortest paths from a vertex to everybody else
- Asymptotics
 - Two parameters!

Knapsack: variants

- Greedy
 - Optimal for breakable objects
- Dynamic programming
 - Types of objects
- NP-complete
 - Non-breakable objects
- Approximate algorithm
 - Modifies the greedy
Greedy algorithms

- Scheduling
 - Min time in the system
 - Unit time jobs with deadlines
- Making change
 - Optimal for some coinage
- Often
 - Basis for heuristic algorithms
 - Coloring, metric TSP

Divide and conquer

- Long integer arithmetic
 - $a*b$ MT, different lengths
- Strassen
 - Matrix multiplication
- Median in linear time
- Mergesort
Dynamic programming

- Shortest paths from everybody to everybody
 - Floyd's algorithm
- Chained matrix multiplication
- Table
 - Making change
 - Knapsack
- Memory functions

Traveling salesman: variants

- Trivial n! permutations
- Dynamic programming: $\Theta(n^2 2^n)$
 - Builds $\text{Opt}[S; x] = \text{length of the cheapest path starting in city } 1 \text{ visiting all the cities in } S\setminus\{x\} \text{ and stopping in city } x$
- Branch and bound
 - Exclude/include edges one by one
 - That gives constraints
- Metric TSP
Backtracking, Branch&Bound

- Games
- Eight queens
- Assignment
 - Jobs to workers
- TSP
- Minimax

Complexity

- Lower bounds
 - Information theoretical
 - Game of K questions
 - Average leaves depth in a tree
 - Sorting complexity
 - Adversary arguments
 - Finding maximum
 - Finding median
 - Graph connectivity
P and NP

- Optimization and Decision problems
 - Classes P and NP
- Polynomial reduction
- NP-completeness
 - SAT-CNF, SAT-3-CNF
 - TSPD, HAMD, HAM
- NP-hardness

Approximate algorithms

- Knapsack
 - Modified from greedy
- Metric TSP
 - MST

Book sections
- 3, 4, 5
- 6.1-6.5, 6.6.1
- 7.1-7.6
- 8, 9
- 12.2, 12.3, 12.5
- 13.1-13.2