Final overview

EECS 477
Lecture 24, 12/10/2002

Asymptotic notation

$-\mathrm{O}(\mathrm{n}), \Omega(\mathrm{n}), \Theta(\mathrm{n})$

- Know them by heart
- Average, best, and worst performance

- Elementary operations
- Lower bounds and upper bounds
- Problems, algorithms, instances

Barometers, simple control structures

Recurrencies

Recursion, divide and conquer

- Inhomogeneous recurrence
- General form of solution
- Taking care of the RHS and initial conditions
- Multiple roots of characteristic equation
- Transformations
- Change of variable
- Change of range

Master Theorem

$\square T(n)=a T(n / b)+f(n)$
\square Three cases
$* f(n)=O\left(n^{\log _{b a-}-\varepsilon}\right)$ then $T(n)=\Theta\left(n^{\log _{b a}}\right)$
$* f(n)=\Theta\left(n^{\left.\log _{b a-\varepsilon}\right)}\right)$ then $T(n)=\Theta\left(n^{\left.\log _{b a} \log n\right)}\right.$
$* f(n)=\Omega\left(n^{\log _{b a}+\varepsilon}\right)$ (and if af($(n / b) \leq c f(n)$ for some constant $\mathrm{c}<1$) then $\mathrm{T}(\mathrm{n})=\Theta(\mathrm{f}(\mathrm{n}))$
■ If <= then can claim O result

- There are gaps in the theorem

Data structures

■ Heaps (various)

- Disjoint sets
- Trees
- Hash tables

■ Vectors and other simple ones

Graphs

■ Complete, connected, strongly connected, articulation points, spanning trees, paths, cycles, DAGs
\square Two simple traversals

- DFS, BFS: What is runtime asymptotics?
- Two representations
- Two parameters

Graphs with edge weights

MST: O(E log V)

- Kruskal: shortest edges first
- Prim: grow a tree

■ Dijkstra: $\mathrm{O}((\mathrm{A}+\mathrm{N}) \log \mathrm{N})$ or $\mathrm{O}\left(\mathrm{N}^{2}\right)$

- Shortest paths from a vertex to everybody else
- Asymptotics
- Two parameters!

Knapsack: variants

■ Greedy

- Optimal for breakable objects
- Dynamic programming
- Types of objects

NP-complete

- Non-breakable objects
- Approximate algorithm
- Modifies the greedy

Greedy algorithms

- Scheduling
- Min time in the system
- Unit time jobs with with deadlines
- Making change
- Optimal for some coinage

■ Often

- Basis for heuristic algorithms
- Coloring, metric TSP

Divide and conquer

■ Long integer arithmetic
a*b MT, different lengths
■ Strassen

- Matrix multiplication
- Median in linear time

■ Mergesort

Dynamic programming

- Shortest paths from everybody to everybody
- Floyd's algorithm
- Chained matrix multiplication

■ Table

- Making change
- Knapsack

Memory functions

Traveling salesman: variants

■ Trivial n! permutations

- Dynamic programming: $\Theta\left(n^{2} 2^{n}\right)$
- Builds Opt[S; x] = length of the cheapest path starting in city 1 visiting all the cities in $\mathrm{S} \backslash\{x\}$ and stopping in city x
- Branch and bound
- Exclude/include edges one by one
- That gives constraints
- Metric TSP

Backtracking, Branch\&Bound

- Games

Eight queens

- Assignment
- Jobs to workers

TSP
Minimax

Complexity

- Lower bounds
- Information theoretical
- Game of K questions
- Average leaves depth in a tree
- Sorting complexity
- Adversary arguments
- Finding maximum
- Finding median
- Graph connectivity

P and NP

■ Optimization and Decision problems - Classes P and NP

■ Polynomial reduction

- NP-completeness
- SAT-CNF, SAT-3-CNF
- TSPD, HAMD, HAM
- NP-hardness

Approximate algorithms

■ Knapsack

- Modified from greedy

Book sections
■ Metric TSP

- MST
- 3, 4, 5
- 6.1-6.5, 6.6.1
- 7.1-7.6
- 8, 9
- 12.2, 12.3, 12.5
- 13.1-13.2

