What’s covered

• Basics: relevant math, proof techniques, asymptotic notation

• Design and analysis of algorithms
 – Study existing algorithms, find common (fundamental) patterns
 – Distinguish types of algorithms: greedy, D&C, etc.
 – Learn to analyze new algorithms and implementations

• Computational complexity basics
Why study algorithms?

- to get rich, famous, satisfy hidden aspirations?

- Multiple algorithms for the same problem

- Realize trade-offs

- Understand algorithm efficiency issues: 2^n grows much much faster than n^3.

- Even for the simplest problems: multiplication example
Example: integer multiplication: board

- 235 \times 14
 - American: \(235 \times 14 = 235 \times 10 + 235 \times 4 = (235 \times 1) \times 10 + 235 \times 4\)
 - \(à la russe\): \(235 \times 14 = 235 \times 1110_b = 235 \times (8 + 4 + 2) = 235 \times 2 + (235 \times 2) \times 2 + (235 \times 2 \times 2) \times 2\)

- a longer example 2356 \times 1472
 - D&C: \(2356 \times 1472 = (23 \times 14) \times 10^4 + (23 \times 72 + 56 \times 14) \times 10^2 + 56 \times 72\)
Example: integer multiplication

- Which algorithm is the best? Can you prove it?

- How do you count the operations?

- Empirically? Multiplications only? Additions only?

- Need some basic tools and definitions before proceeding rigorously: a few lectures to cover those
Notation

- Propositional calculus: Boolean variables, constants, connectives $\lor, \land, \neg, \Rightarrow, \Leftrightarrow$

- Quantifiers: $(\forall k \in \mathbb{N})(\exists n \in \mathbb{N})[n > k]$. That is, for any natural number k there is another integer greater than k.

- Duality (good for formal manipulations):

\[\neg(\forall x \in X)[P(x)] \text{ is equivalent to } (\exists x \in X)[\neg P(x)]\]

\[\neg(\exists x \in X)[P(x)] \text{ is equivalent to } (\forall x \in X)[\neg P(x)]\]
Sets

• Set A is well-defined when for any x one can tell if $x \in A$

• Theorem: $A = B$ if and only if $A \subset B$ and $B \subset A$

 printing all the primes below 100: check that every printed number is a prime, check that every prime is printed

• Many different objects are defined as sets: e.g. graphs with vertex set V are subsets of $V \times V$.

 Of course, a general set has no structure upon it.
Functions and relations

• Cartesian product: $X \times Y = \{(x, y) | x \in X, y \in Y\}$. So that $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ which is a plane.

• Relation: a subset ρ of $X \times Y$, e.g. \leq. There are partial orders and total orders.

• Function $f : X \rightarrow Y$: for any $x \in X$ there is just one $y \in Y$: there are $|Y|^{|X|}$ such functions

• When $Y = \{true, false\}$ then $f : X \rightarrow Y$ is a predicate

• Injections, surjections, bijections, inverse
Functions and computation: I

- Algorithms implement functions: map the set of possible inputs to the set of outputs

- Boolean functions test properties output \(\{0, 1\} \). What is the number of Boolean functions on \(N \) inputs?

- Reversible computation: do not erase computed bits (erasure dissipates energy) – low power electronic circuits design: (can we find inputs looking at outputs?)

- Another example – lossless compression.
Functions and computation: II

• Program testing: black-box (oracle) model for testing
 – test inputs to verify function properties that must hold: triangle area
 – how to test invertibility?

• Monotone functions: strictly monotone functions have inverses perhaps on a restriction of their image. (injectivity!)

• Restriction on subdomain of inputs
Functions and computation: III

Define functions (= specifying an algorithm?)

- table

- arithmetic formula, composition \((f \circ g)\).

- case analysis (if-then)

- set-theoretic: cartesian product, extensions
What else can we do with formal approach?

• Prove general theorems

 – Modus ponens: \(a \land (a \Rightarrow b) \) implies \(b \)

 – \(\forall n \in \mathbb{N} : n(n + 1) \) is even (no need to consider odd case in your algorithm perhaps).

• reduce our wish list

 The halting theorem: there is no algorithm that, given the text of a program, always finishes and correctly says whether the program is going to finish for all inputs.
Proofs

- Exhaustive search, enumeration
 - prove that $a \Rightarrow b$ is the same as $\neg a \lor b$
 - easy but useless for large/infinite domains

- Direct formal proofs
 - Given a theorem $H_1 \land H_2 \ldots \Rightarrow C$ establish all hypotheses and make the conclusion, e.g. $1234567895 \mod 11 = 0$

- Deduction: from general statements to special cases
Proofs by contradiction

- **Theorem:** There are infinitely many prime numbers.

- **Proof:**

 Suppose that the set P of prime numbers is finite.

 Form $x = \prod_{k \in P} k$.

 Let d be the smallest integer greater than 1 that divides $x + 1$. Note that $d \in P$.

 Hence, $(x + 1) \mod d = 0$ and $x \mod d = 0$ which is impossible. We conclude that P is infinite.
Proofs by contradiction

- The preceding proof had a constructive component

- $new_{\text{prime}}(P) := 1 + \prod_{k \in P} k$.

- It would seem that $P_0 = \{2\}, P_{k+1} = P_k \cup \{new_{\text{prime}}(P_k)\}$ gives an ever growing sets of primes. Does it?
Let’s check

• \{2\}

• \{2, 2 + 1\} = \{2, 3\}

• \{2, 3, 2 \times 3 + 1\} = \{2, 3, 7\},

• \{2, 3, 7, 2 \times 3 \times 7 + 1\} = \{2, 3, 7, 43\}

• it seems to be working so far
Induction and deduction

• Wrong.

• $42 \times 43 + 1 = 139 \times 13$

• this induction does not seem to work

• Induction: from particular instances to general laws

• Deduction: from general to particular
Mathematical induction

- Mathematical induction: a rigorous proof procedure

- Need to prove $P(n), \forall n \in \mathbb{N}$

- Two stages
 1. Basis: $P(a)$
 2. Induction step: $(\forall n > a)[P(n - 1) \Rightarrow P(n)]$

- Example: $\sum_{i=1}^{n}(2i - 1) = n^2$
Mathematical induction: a la russe

int russe(int m, int n) {
 if(m==1)
 return n;
 else {
 if(m%2==0)
 return russe(m/2,n*2);
 else
 return n + russe(m/2, n*2);
 }
}

We can prove the correctness of the algorithm using induction.