EECS 477: Introduction to algorithms.
Lecture 1
TTh 8:30-10am

Prof. Igor Guskov
guskov@eecs.umich.edu
office: 126 ATL building (AI lab)

September 3, 2002

What's covered

- Basics: relevant math, proof techniques, asymptotic notation
- Design and analysis of algorithms
- Study existing algorithms, find common (fundamental) patterns
- Distiguish types of algorithms: greedy, D\&C, etc.
- Learn to analyze new algorithms and implementations
- Computational complexity basics

Why study algorithms?

- to get rich, famous, satisfy hidden aspirations?
- Multiple algorithms for the same problem
- Realize trade-offs
- Understand algorithm efficiency issues: 2^{n} grows much much faster than n^{3}.
- Even for the simplest problems: multiplication example

Example: integer multiplication: board

- 235 * 14
- American: $235 * 14=235 * 10+235 * 4=(235 * 1) * 10+$ $235 * 4$
- à la russe: $235 * 14=235 * 1110_{b}=235 *(8+4+2)=$ $235 * 2+(235 * 2) * 2+(235 * 2 * 2) * 2$
- a longer example $2356 * 1472$

$$
\begin{aligned}
& \text { - D\&C: } 2356 * 1472=(23 * 14) * 10^{4}+(23 * 72+56 * 14) * \\
& \\
& 10^{2}+56 * 72
\end{aligned}
$$

Example: integer multiplication

- Which algorithm is the best? Can you prove it?
- How do you count the operations?
- Empirically? Multiplications only? Additions only?
- Need some basic tools and definitions before proceeding rigorously: a few lectures to cover those

Notation

- Propositional calculus: Boolean variables, constants, connectives $\vee, \wedge, \neg, \Rightarrow, \Leftrightarrow$
- Quantifiers: $(\forall k \in \mathbf{N})(\exists n \in \mathbf{N})[n>k]$. That is, for any natural number k there is another integer greater than k.
- Duality (good for formal manipulations):

$$
\begin{aligned}
& \neg(\forall x \in X)[P(x)] \text { is equivalent to }(\exists x \in X)[\neg P(x)] \\
& \neg(\exists x \in X)[P(x)] \text { is equivalent to }(\forall x \in X)[\neg P(x)]
\end{aligned}
$$

Sets

- Set A is well-defined when for any x one can tell if $x \in A$
- Theorem: $A=B$ if and only if $A \subset B$ and $B \subset A$
printing all the primes below 100: check that every printed number is a prime, check that every prime is printed
- Many different objects are defined as sets: e.g. graphs with vertex set V are subsets of $V \times V$.

Of course, a general set has no structure upon it.

Functions and relations

- Cartesian product: $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$. So that $\mathbf{R} \times \mathbf{R}=\mathbf{R}^{2}$ which is a plane.
- Relation: a subset ρ of $X \times Y$, e.g. \leq. There are partial orders and total orders.
- Function $f: X \rightarrow Y$: for any $x \in X$ there is just one $y \in Y$: there are $|Y|^{|X|}$ such functions
- When $Y=\{$ true, false $\}$ then $f: X \rightarrow Y$ is a predicate
- Injections, surjections, bijections, inverse

Functions and computation: I

- Algorithms implement functions: map the set of possible inputs to the set of outputs
- Boolean functions test properties output $\{0,1\}$. What is the number of Boolean functions on N inputs?
- Reversible computation: do not erase computed bits (erasure dissipates energy) - low power electronic circuits design: (can we find inputs looking at outputs?)
- Another example - lossless compression.

Functions and computation: II

- Program testing: black-box (oracle) model for testing
- test inputs to verify function properties that must hold: triangle area
- how to test invertibility?
- Monotone functions: strictly monotone functions have inverses perhaps on a restriction of their image. (injectivity!)
- Restriction on subdomain of inputs

Functions and computation: III

Define functions (= specifying an algorithm?)

- table
- arithmetic formula, composition $(f \circ g)$.
- case analysis (if-then)
- set-theoretic: cartesian product, extensions

What else can we do with formal approach?

- Prove general theorems
- Modus ponens: $a \wedge(a \Rightarrow b)$ implies b
- $\forall n \in \mathbf{N}: n(n+1)$ is even (no need to consider odd case in your algorithm perhaps).
- reduce our wish list

The halting theorem: there is no algorithm that, given the text of a program, always finishes and correctly says whether the program is going to finish for all inputs

Proofs

- Exhaustive search, enumeration
- prove that $a \Rightarrow b$ is the same as $\neg a \vee b$
- easy but useless for large/infinite domains
- Direct formal proofs
- Given a theorem $H_{1} \wedge H_{2} \ldots \Rightarrow C$ establish all hypotheses and make the conclusion, e.g. $1234567895 \bmod 11=0$
- Deduction: from general statements to special cases

Proofs by contradiction

- Theorem: There are infinitely many prime numbers.
- Proof:

Suppose that the set P of prime numbers is finite.
Form $x=\Pi_{k \in P} k$.
Let d be the smallest integer greater than 1 that divides $x+1$. Note that $d \in P$.

Hence, $(x+1) \bmod d=0$ and $x \bmod d=0$ which is impossible. We conclude that P is infinite.

Proofs by contradiction

- The preceding proof had a constructive component
- new_prime $(P):=1+\Pi_{k \in P} k$.
- It would seem that $P_{0}=\{2\}, P_{k+1}=P_{k} \cup\left\{\right.$ new_prime $\left.\left(P_{k}\right)\right\}$ gives an ever growing sets of primes. Does it?

Let's check

- $\{2\}$
- $\{2,2+1\}=\{2,3\}$
- $\{2,3,2 * 3+1\}=\{2,3,7\}$,
- $\{2,3,7,2 * 3 * 7+1\}=\{2,3,7,43\}$
- it seems to be working so far

Induction and deduction

- Wrong.
- $42 * 43+1=139 * 13$
- this induction does not seem to work
- Induction: from particular instances to general laws
- Deduction: from general to particular

Mathematical induction

- Mathematical induction: a rigorous proof procedure
- Need to prove $P(n), \forall n \in \mathbf{N}$
- Two stages

1. Basis: $P(a)$
2. Induction step: $(\forall n>a)[P(n-1) \Rightarrow P(n)]$

- Example: $\sum_{i=1}^{n}(2 i-1)=n^{2}$

Mathematical induction: a la russe

```
int russe(int m, int n) {
    if (m==1)
        return n;
    else {
        if (m%2==0)
            return russe(m/2,n*2);
        else
            return n + russe(m/2, n*2);
}
```

We can prove the correctness of the algorithm using induction.

