
EECS 477: Introduction to algorithms.

Lecture 1

TTh 8:30-10am

Prof. Igor Guskov

guskov@eecs.umich.edu

office: 126 ATL building (AI lab)

September 3, 2002

1

What’s covered

• Basics: relevant math, proof techniques, asymptotic nota-
tion

• Design and analysis of algorithms

– Study existing algorithms, find common (fundamental)
patterns

– Distiguish types of algorithms: greedy, D&C, etc.

– Learn to analyze new algorithms and implementations

• Computational complexity basics

2

Why study algorithms?

• to get rich, famous, satisfy hidden aspirations?

• Multiple algorithms for the same problem

• Realize trade-offs

• Understand algorithm efficiency issues: 2n grows much much

faster than n3.

• Even for the simplest problems: multiplication example

3

Example: integer multiplication: board

• 235 ∗ 14

– American: 235 ∗14 = 235 ∗10+235 ∗4 = (235 ∗1) ∗10+

235 ∗ 4

– à la russe: 235 ∗ 14 = 235 ∗ 1110b = 235 ∗ (8 + 4 + 2) =

235 ∗ 2 + (235 ∗ 2) ∗ 2 + (235 ∗ 2 ∗ 2) ∗ 2

• a longer example 2356 ∗ 1472

– D&C: 2356 ∗1472 = (23 ∗14) ∗104 +(23 ∗72+56 ∗14) ∗
102 + 56 ∗ 72

4

Example: integer multiplication

• Which algorithm is the best? Can you prove it?

• How do you count the operations?

• Empirically? Multiplications only? Additions only?

• Need some basic tools and definitions before proceeding rig-

orously: a few lectures to cover those

5

Notation

• Propositional calculus: Boolean variables, constants, con-

nectives ∨,∧,¬,⇒,⇔

• Quantifiers: (∀k ∈ N)(∃n ∈ N)[n > k]. That is, for any

natural number k there is another integer greater than k.

• Duality (good for formal manipulations):

¬(∀x ∈ X)[P (x)] is equivalent to (∃x ∈ X)[¬P (x)]

¬(∃x ∈ X)[P (x)] is equivalent to (∀x ∈ X)[¬P (x)]

6

Sets

• Set A is well-defined when for any x one can tell if x ∈ A

• Theorem: A = B if and only if A ⊂ B and B ⊂ A

printing all the primes below 100: check that every printed

number is a prime, check that every prime is printed

• Many different objects are defined as sets: e.g. graphs with

vertex set V are subsets of V × V .

Of course, a general set has no structure upon it.

7

Functions and relations

• Cartesian product: X × Y = {(x, y)|x ∈ X, y ∈ Y }. So that
R×R = R2 which is a plane.

• Relation: a subset ρ of X × Y , e.g. ≤. There are partial
orders and total orders.

• Function f : X → Y : for any x ∈ X there is just one y ∈ Y :
there are |Y ||X| such functions

• When Y = {true, false} then f : X → Y is a predicate

• Injections, surjections, bijections, inverse

8

Functions and computation: I

• Algorithms implement functions: map the set of possible
inputs to the set of outputs

• Boolean functions test properties output {0,1}. What is the
number of Boolean functions on N inputs?

• Reversible computation: do not erase computed bits (era-
sure dissipates energy) – low power electronic circuits design:
(can we find inputs looking at outputs?)

• Another example – lossless compression.

9

Functions and computation: II

• Program testing: black-box (oracle) model for testing

– test inputs to verify function properties that must hold:

triangle area

– how to test invertibility?

• Monotone functions: strictly monotone functions have in-

verses perhaps on a restriction of their image. (injectivity!)

• Restriction on subdomain of inputs

10

Functions and computation: III

Define functions (= specifying an algorithm?)

• table

• arithmetic formula, composition (f ◦ g).

• case analysis (if-then)

• set-theoretic: cartesian product, extensions

11

What else can we do with formal approach?

• Prove general theorems

– Modus ponens: a ∧ (a ⇒ b) implies b

– ∀n ∈ N : n(n + 1) is even (no need to consider odd case

in your algorithm perhaps).

• reduce our wish list

The halting theorem: there is no algorithm that, given

the text of a program, always finishes and correctly says

whether the program is going to finish for all inputs

12

Proofs

• Exhaustive search, enumeration

– prove that a ⇒ b is the same as ¬a ∨ b

– easy but useless for large/infinite domains

• Direct formal proofs

– Given a theorem H1 ∧H2 . . . ⇒ C establish all hypotheses
and make the conclusion, e.g. 1234567895 mod 11 = 0

• Deduction: from general statements to special cases

13

Proofs by contradiction

• Theorem: There are infinitely many prime numbers.

• Proof:

Suppose that the set P of prime numbers is finite.

Form x =
∏

k∈P k.

Let d be the smallest integer greater than 1 that divides
x + 1. Note that d ∈ P .

Hence, (x + 1) mod d = 0 and x mod d = 0 which is
impossible. We conclude that P is infinite.

14

Proofs by contradiction

• The preceding proof had a constructive component

• new prime(P) := 1 +
∏

k∈P k.

• It would seem that P0 = {2} , Pk+1 = Pk ∪ {new prime(Pk)}
gives an ever growing sets of primes. Does it?

15

Let’s check

• {2}

• {2,2 + 1} = {2,3}

• {2,3,2 ∗ 3 + 1} = {2,3,7} ,

• {2,3,7,2 ∗ 3 ∗ 7 + 1} = {2,3,7,43}

• it seems to be working so far

16

Induction and deduction

• Wrong.

• 42*43+1 = 139*13

• this induction does not seem to work

• Induction: from particular instances to general laws

• Deduction: from general to particular

17

Mathematical induction

• Mathematical induction: a rigorous proof procedure

• Need to prove P (n), ∀n ∈ N

• Two stages

1. Basis: P (a)

2. Induction step: (∀n > a)[P (n− 1) ⇒ P (n)]

• Example:
∑n

i=1(2i− 1) = n2

18

Mathematical induction: a la russe

int russe(int m, int n) {

if(m==1)

return n;

else {

if(m%2==0)

return russe(m/2,n*2);

else

return n + russe(m/2, n*2);

}

We can prove the correctness of the algorithm using induction.

19

