EECS 477: Introduction to algorithms.
Lecture 2
TTh 8:30-10am

Prof. Igor Guskov
guskov@eecs.umich.edu
office: 126 ATL building (AI lab)

September 5, 2002
Lecture outline

• Mathematical induction
 – Simple case
 – Generalized induction
 – Common mistakes

• Limits, De l’Hôpital rule
Mathematical induction

- Mathematical induction: a rigorous proof procedure

- Need to prove $P(n), \forall n \in \mathbb{N}, n \geq a$

- Two stages
 1. Basis: $P(a)$
 2. Induction step: $(\forall n > a)[P(n-1) \Rightarrow P(n)]$

- Example: $\sum_{i=1}^{n}(2i - 1) = n^2$
Generalized mathematical induction

• Need to prove $P(n), \forall n \in \mathbb{N}, n \geq a$

• Two stages

 1. Basis: $P(n_0)$ holds for all $n_0 \in [a..b - 1]$.

 2. Induction step: for any $n \geq b$ we have

 $$(\forall k \in [a..n - 1])[P(k)] \Rightarrow P(n)$$

• Example: every positive integer can be expressed as a product of prime numbers.
Mathematical induction: a la russe I

```c
int russe(int m, int n) {
    if(m==1)
        return n;
    else {
        if(m%2==0)
            return russe(m/2,n*2);
        else
            return n + russe(m/2, n*2);
    }
}
```

We can prove the correctness of the algorithm using induction on \(m \).
Mathematical induction: a la russe II

- Basis: \(m = 1 \)

- Induction: suppose that \(\text{russe}(s, t) \) returns \(s \times t \) for any \(s < m \). Need to prove that \(\text{russe}(m, n) \) returns \(m \times n \). Two cases to consider:

 even: \(m = 2 \times t \)

 odd: \(m = 2 \times t + 1 \)
Mathematical induction: miscellaneous

- It is sometimes easier to prove a stronger statement
 - Prove that $\sum_{i=1}^{n}(2i - 1)$ is a square.

- Common pitfalls
 - No basis
 - Wrong induction step: horse of a different color (1.6.2)
 - $2^n > n^2$
Limits I

• $f(n)$ tends to the limit a as n tends to infinity if for any positive real number $\epsilon > 0$ there is $N(\epsilon)$ such that

$$|f(n) - a| < \epsilon,$$

for all $n > N(\epsilon)$.

we then say $\lim_{n \to \infty} f(n) = a$ or $f(n) \to a$ as $n \to \infty$.

• Example: $\lim_{n \to \infty} r^n$ for $|r| < 1$.

• Indeed $N(\epsilon) = \lceil \log_{|r|} \epsilon \rceil$ and monotonicity.
Limits II

• \(f(n) \) tends to \(+\infty\) as \(n \) tends to infinity if for any positive real number \(A > 0 \) there is \(N(A) \) such that

\[
f(n) > A, \text{ for all } n > N(A)
\]

we then say \(\lim_{n \to \infty} f(n) = +\infty \) or \(f(n) \to +\infty \) as \(n \to \infty \).

• Example: \(\lim_{n \to \infty} R^n \) for \(R > 1 \).

• Indeed \(N(A) = \lceil \log_R A \rceil \) and monotonicity.
Limits: simple properties

• \(\lim_{n \to \infty} (f(n) + g(n)) = \lim_{n \to \infty} f(n) + \lim_{n \to \infty} g(n) \) if both RHS limits exist;

• \(\lim_{n \to \infty} (f(n)g(n)) = \lim_{n \to \infty} f(n) \lim_{n \to \infty} g(n) \) if both RHS limits exist;

• \(\lim_{n \to \infty} (f(n)/g(n)) = \lim_{n \to \infty} f(n)/\lim_{n \to \infty} g(n) \) if both RHS limits exist and \(\lim_{n \to \infty} g(n) \neq 0 \);
Limits example

• Solve applying facts from the previous slide:

$$\lim_{n \to \infty} \frac{1 + 2^n}{2^n} = ?$$

• What about this one:

$$\lim_{n \to \infty} \frac{\log n}{n} = ?$$

Here we shall use $\log x := \log_2 x = \log_2 e \ln x = \ln x / \ln 2$.
De l’Hôpital rule

• Suppose that \(\lim_{n \to \infty} f(n) = \lim_{n \to \infty} g(n) = 0 \) (or \(+\infty \)). Suppose we can construct extensions of \(f \) and \(g \) to the real line. Then

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = \frac{\lim_{x \to \infty} f'(x)}{\lim_{x \to \infty} g'(x)}
\]

if both of the RHS limits exist and the RHS denominator is not zero.

• What about this one:

\[
\lim_{n \to \infty} \frac{\log n}{n} = \frac{\lim_{x \to \infty} [1/(x \ln 2)]}{\lim_{x \to \infty} 1} = 0/1 = 0.
\]
More things to know

- Geometric series

- Combinatorics, permutations, factorial, \((1 + x)^n\)