EECS 477: Introduction to algorithms. Lecture 2

TTh 8:30-10am

Prof. Igor Guskov
guskov@eecs.umich.edu
office: 126 ATL building (AI lab)

September 5, 2002

Lecture outline

- Mathematical induction
- Simple case
- Generalized induction
- Common mistakes
- Limits, De l'Hôpital rule

Mathematical induction

- Mathematical induction: a rigorous proof procedure
- Need to prove $P(n), \forall n \in \mathbf{N}, n \geq a$
- Two stages

1. Basis: $P(a)$
2. Induction step: $(\forall n>a)[P(n-1) \Rightarrow P(n)]$

- Example: $\sum_{i=1}^{n}(2 i-1)=n^{2}$

Generalized mathematical induction

- Need to prove $P(n), \forall n \in \mathbf{N}, n \geq a$
- Two stages

1. Basis: $P\left(n_{0}\right)$ holds for all $n_{0} \in[a . . b-1]$.
2. Induction step: for any $n \geq b$ we have

$$
(\forall k \in[a . . n-1])[P(k)] \Rightarrow P(n)
$$

- Example: every positive integer can be expressed as a product of prime numbers.

Mathematical induction: a la russe I

```
int russe(int m, int n) {
    if (m==1)
        return n;
    else {
        if(m%2==0)
            return russe(m/2,n*2);
        else
            return n + russe(m/2, n*2);
    }
}
```

We can prove the correctness of the algorithm using induction on m.

Mathematical induction: a la russe II

- Basis: $m=1$
- Induction: suppose that russe(s, t) returns $s * t$ for any $s<m$. Need to prove that russe (m, n) returns $m * n$. Two cases to consider:
even: $m=2 * t$
odd: $m=2 * t+1$:

Mathematical induction: miscellaneous

- It is sometimes easier to prove a stronger statement
- Prove that $\sum_{i=1}^{n}(2 i-1)$ is a square.
- Common pitfalls
- No basis
- Wrong induction step: horse of a different color (1.6.2)
$-2^{n}>n^{2}$
ϵ

Limits I

- $f(n)$ tends to the limit a as n tends to infinity if for any positive real number $\epsilon>0$ there is $N(\epsilon)$ such that

$$
|f(n)-a|<\epsilon, \text { for all } n>N(\epsilon)
$$

we then say $\lim _{n \rightarrow \infty} f(n)=a$ or $f(n) \rightarrow a$ as $n \rightarrow \infty$.

- Example: $\lim _{n \rightarrow \infty} r^{n}$ for $|r|<1$.
- Indeed $N(\epsilon)=\left\lceil\log _{|r|} \epsilon\right\rceil$ and monotonicity.

Limits II

- $f(n)$ tends to $+\infty$ as n tends to infinity if for any positive real number $A>0$ there is $N(A)$ such that

$$
f(n)>A, \text { for all } n>N(A)
$$

we then say $\lim _{n \rightarrow \infty} f(n)=+\infty$ or $f(n) \rightarrow+\infty$ as $n \rightarrow \infty$.

- Example: $\lim _{n \rightarrow \infty} R^{n}$ for $R>1$.
- Indeed $N(A)=\left\lceil\log _{R} A\right\rceil$ and monotonicity.

Limits: simple properties

- $\lim _{n \rightarrow \infty}(f(n)+g(n))=\lim _{n \rightarrow \infty} f(n)+\lim _{n \rightarrow \infty} g(n)$ if both RHS limits exist;
- $\lim _{n \rightarrow \infty}(f(n) g(n))=\lim _{n \rightarrow \infty} f(n) \lim _{n \rightarrow \infty} g(n)$ if both RHS limits exist;
- $\lim _{n \rightarrow \infty}(f(n) / g(n))=\lim _{n \rightarrow \infty} f(n) / \lim _{n \rightarrow \infty} g(n)$ if both RHS limits exist and $\lim _{n \rightarrow \infty} g(n) \neq 0$;

Limits example

- Solve applying facts from the previous slide:

$$
\lim _{n \rightarrow \infty} \frac{1+2^{n}}{2^{n}}=?
$$

- What about this one:

$$
\lim _{n \rightarrow \infty} \frac{\log n}{n}=?
$$

Here we shall use $\log x:=\log _{2} x=\log _{2} e \ln x=\ln x / \ln 2$.

De l'Hôpital rule

- Suppose that $\lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} g(n)=0($ or $+\infty)$. Suppose we can construct extensions of f and g to the real line. Then

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\frac{\lim _{x \rightarrow \infty} f^{\prime}(x)}{\lim _{x \rightarrow \infty} g^{\prime}(x)}
$$

if both of the RHS limits exist and the RHS denominator is not zero.

- What about this one:

$$
\lim _{n \rightarrow \infty} \frac{\log n}{n}=\frac{\lim _{x \rightarrow \infty}[1 /(x \ln 2)]}{\lim _{x \rightarrow \infty} 1}=0 / 1=0
$$

More things to know

- Geometric series
- Combinatorics, permutations, factorial, $(1+x)^{n}$

