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Lecture outline

e Mathematical induction
— Simple case
— Generalized induction

— Common mistakes

e Limits, De I'HOpital rule



Mathematical induction
e Mathematical induction: a rigorous proof procedure
e Need to prove P(n),Vvn € N,n > a

e Two stages
1. Basis: P(a)

2. Induction step: (Vn > a)[P(n—1) = P(n)]

e Example: Y7 ,(2i — 1) =n?



Generalized mathematical induction

e Need to prove P(n),Vn e N,n > a

e Two stages
1. Basis: P(ng) holds for all ng € [a..b — 1].

2. Induction step: for any n > b we have

(Vk € [a.n — 1] [P(k)] = P(n)

e Example: every positive integer can be expressed as a prod-
uct of prime numbers.



Mathematical induction: a la russe 1

int russe(int m, int n) {
if (m==1)
return n;
else {
if (m%2==0)
return russe(m/2,n%*2);
else

return n + russe(m/2, n*2);

We can prove the correctness of the algorithm using induction
on m.



Mathematical induction: a la russe II

e Basis: m=1

e Induction: suppose that russe(s,t) returns sx*t for any s < m.
Need to prove that russe(m,n) returns m*n. Two cases to

consider:
even: m =2t

odd: m=2xt+ 1:



Mathematical induction: miscellaneous

e It is sometimes easier to prove a stronger statement

— Prove that > _,(2: — 1) is a square.
1=1

e Common pitfalls
— NoO basis
— Wrong induction step: horse of a different color (1.6.2)

— 2N > 2






Limits I

e f(n) tends to the limit ¢ as n tends to infinity if for any
positive real number € > 0 there is N(e) such that

|f(n) —a|l <e forall n > N(e)

we then say limp—oo f(n) =a or f(n) — a as n — oo.

e Example: limp—oor™ for |r| < 1.

e Indeed N(e) = {Iogmew and monotonicity.



Limits 11

e f(n) tends to 400 as n tends to infinity if for any positive
real number A > 0 there is N(A) such that

f(n) > A,for all n > N(A)

we then say lim,—c f(n) = 400 or f(n) — 400 as n — oo.

e Example: limy_—oo R"™ for R > 1.

e Indeed N(A) = [logr A] and monotonicity.
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Limits: simple properties

o limp—oo(f(n) +9g(n)) = limp—oo f(n) + limy—oo g(n) if both
RHS limits exist;

o liMpy—oo(f(n)g(n)) = limp—oo f(n) limp—co g(n) if both RHS
limits exist;

o limp—oo(f(n)/g(n)) =limp—oso f(n)/liMp—cc g(n) if both RHS
limits exist and limn—co g(n) # 0;
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Limits example

e Solve applying facts from the previous slide:
1+2"

lim =7
nN—>00 277/
e \What about this one:
lO
im 29" 5

n—aeo n

Here we shall use logxz :=10gox = logoselnx =Inxz/In2.
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De I’'HOpital rule

e Suppose that limp—oo f(n) = limp—oog(n) = 0 (or +o00).
Suppose we can construct extensions of f and g to the real
line. Then

f(n) _ limg— o f'(x)
=00 g(n)  liMg—oo ¢’ ()
if both of the RHS limits exist and the RHS denominator is
not zero.

e \What about this one:

im logn _ liMz—oo[l/(z1n2)] —0/1=0.

n—oo  n liMy oo 1
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More things to know

e Geometric series

e Combinatorics, permutations, factorial, (1 4+ z)"
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