EECS 477: Introduction to algorithms. Lecture 2 TTh 8:30-10am

Prof. Igor Guskov guskov@eecs.umich.edu office: 126 ATL building (AI lab)

September 5, 2002

Lecture outline

- Mathematical induction
 - Simple case
 - Generalized induction
 - Common mistakes
- Limits, De l'Hôpital rule

Mathematical induction

- Mathematical induction: a rigorous proof procedure
- Need to prove $P(n), \forall n \in \mathbf{N}, n \geq a$
- Two stages
 - 1. Basis: P(a)
 - 2. Induction step: $(\forall n > a)[P(n-1) \Rightarrow P(n)]$

• Example:
$$\sum_{i=1}^{n} (2i - 1) = n^2$$

Generalized mathematical induction

- Need to prove $P(n), \forall n \in \mathbf{N}, n \geq a$
- Two stages
 - 1. Basis: $P(n_0)$ holds for all $n_0 \in [a..b-1]$.
 - 2. Induction step: for any $n \ge b$ we have

$$(\forall k \in [a..n-1])[P(k)] \Rightarrow P(n)$$

• Example: every positive integer can be expressed as a product of prime numbers.

Mathematical induction: a la russe I

```
int russe(int m, int n) {
    if(m==1)
        return n;
    else {
        if(m%2==0)
            return russe(m/2,n*2);
        else
            return n + russe(m/2, n*2);
     }
}
```

We can prove the correctness of the algorithm using induction on m.

Mathematical induction: a la russe II

- Basis: m = 1
- Induction: suppose that russe(s,t) returns s*t for any s < m.
 Need to prove that russe(m,n) returns m*n. Two cases to consider:

even: m = 2 * t

odd: m = 2 * t + 1:

Mathematical induction: miscellaneous

- It is sometimes easier to prove a stronger statement
 - Prove that $\sum_{i=1}^{n} (2i-1)$ is a square.
- Common pitfalls
 - No basis
 - Wrong induction step: horse of a different color (1.6.2)

$$-2^{n} > n^{2}$$

Limits I

• f(n) tends to the limit a as n tends to infinity if for any positive real number $\epsilon > 0$ there is $N(\epsilon)$ such that

$$|f(n) - a| < \epsilon$$
, for all $n > N(\epsilon)$

we then say $\lim_{n\to\infty} f(n) = a$ or $f(n) \to a$ as $n \to \infty$.

- Example: $\lim_{n\to\infty} r^n$ for |r| < 1.
- Indeed $N(\epsilon) = \left[\log_{|r|} \epsilon \right]$ and monotonicity.

Limits II

• f(n) tends to $+\infty$ as n tends to infinity if for any positive real number A > 0 there is N(A) such that

f(n) > A, for all n > N(A)

we then say $\lim_{n\to\infty} f(n) = +\infty$ or $f(n) \to +\infty$ as $n \to \infty$.

- Example: $\lim_{n\to\infty} R^n$ for R > 1.
- Indeed $N(A) = \lceil \log_R A \rceil$ and monotonicity.

Limits: simple properties

- $\lim_{n\to\infty} (f(n) + g(n)) = \lim_{n\to\infty} f(n) + \lim_{n\to\infty} g(n)$ if both RHS limits exist;
- $\lim_{n\to\infty} (f(n)g(n)) = \lim_{n\to\infty} f(n) \lim_{n\to\infty} g(n)$ if both RHS limits exist;
- $\lim_{n\to\infty} (f(n)/g(n)) = \lim_{n\to\infty} f(n)/\lim_{n\to\infty} g(n)$ if both RHS limits exist and $\lim_{n\to\infty} g(n) \neq 0$;

Limits example

• Solve applying facts from the previous slide:

$$\lim_{n \to \infty} \frac{1+2^n}{2^n} = ?$$

• What about this one:

$$\lim_{n \to \infty} \frac{\log n}{n} = ?$$

Here we shall use $\log x := \log_2 x = \log_2 e \ln x = \ln x / \ln 2$.

De l'Hôpital rule

• Suppose that $\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = 0$ (or $+\infty$). Suppose we can construct extensions of f and g to the real line. Then

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \frac{\lim_{x \to \infty} f'(x)}{\lim_{x \to \infty} g'(x)}$$

if both of the RHS limits exist and the RHS denominator is not zero.

• What about this one:

$$\lim_{n \to \infty} \frac{\log n}{n} = \frac{\lim_{x \to \infty} [1/(x \ln 2)]}{\lim_{x \to \infty} 1} = 0/1 = 0.$$

More things to know

- Geometric series
- Combinatorics, permutations, factorial, $(1 + x)^n$