
EECS 477: Introduction to algorithms.

Lecture 3

Prof. Igor Guskov

guskov@eecs.umich.edu

September 10, 2002

1

Lecture outline

• Combinatorics

• Algorithmics

• Computing mathematical functions

• Computational models

• Problems and instances

2

Combinatorics

• set of N elements: subsets ordered and unordered

• equivalence relation: 2N unordered subsets

• subsets with exactly k elements C(N, k) = N !/(N − k)!k!,

need to compute without overflows

• rectilinear paths: 1 is up, 0 is right

3

Top-down design and analysis

• identify relevant invariants and abstractions, reason about

these: use known generic techniques/theorems

• remove unnecessary level of detail

• translate results back into domain-specific terms, fill in de-

tails

• example: build fence around towns (convex hull, D&C)

4

Top-down design and analysis II

• improves reuse

• distinguish coding mistakes from fundamental flaws: who’s
responsible? CEO: ensure perspective and delegate details.
In practice requires experience with application area

• improves learning curve, documentation

• Sample abstraction: graphs, ordering relations

• Sample approach: divide and conquer, greedy, lazy, ...

5

Design reuse

• just another aspect of top-down

• primitives that appear over and over again: sorting, search-
ing, string matching

• research resulted in efficient algorithms: implementations
took years of work, available in software libraries

• e.g. reformulate your problem in graph terms

• reuse is a good idea: implementations, analysis

6

Algorithmics

Need to distinguish for complexity analysis:

• Problem: given a function, how can we efficiently compute

it?

• Algorithms: recipes to compute a given function

• Programs: formalized recipes understandable by computers

7

Algorithmics II

• Problem complexity: the best possible algorithm complexity

• Implementation: may not implement a given algorithm cor-

rectly – that would be a way to find bugs: O(n logn) al-

gorithm complexity and O(n2) running times may indicate a

bug

8

Goals of algorithm analysis

• evaluate and compare existing algorithms: empirically and

theoretically, determine winners under different circumstances

(e.g. quicksort, mergesort, pigeon-hole-sort)

• evaluate, compare and diagnose given implementations

• analyze the complexity of algorithmic problems: sometimes

it is hopeless to look for an algorithm

• can prevent lots of useless programming

9

Algorihm evaluation

Various parameters

• Time (efficiency, performance): asymptotic, on actual inputs

• Memory (size)

• Ease of programming

• Worst, best, average, typical case

• all of these mean potentially no single winner

10

Principle of invariance

• Challenge for time complexity analysis: different hardware,

different number of instructions per second, but we need

some uniform measure of time complexity

• Solution: measure constant time steps – we will be off at

most by a constant

• Principle of invariance: any two implementations of an al-

gorithm (when executed on actual computers) will not differ

in time complexity by more than a constant (this is not a

theorem)

11

Computing mathematical functions

• C(N, k) = N !/((N − k)!k!) so we need to be careful with

N ! try doing 20! – you’ll get overflow. On the other hand

C(20,19) = 20 so it’s not a problem and C(20,10) = 184756

is not that big either.

• another try C(N, k) = (N(N − 1) . . . (N − k + 1)/k!.

• the largest value we get for k = floor(N/2)

• so we not very successful

12

N choose k

• C(N, k + 1) = C(N, k)(N − k)/(k + 1) is easy to prove so:

C(N,1) = N;

for i=1 to k-1 do

C(N,i+1) = (C(N,i)*(N-i)) / (i+1);

• note that we get integers all the way: otherwise we would
be wrong (can also reduce (N − k)/(k +1) to p/q and divide
by q first)

• for k ≤ N/2 result of each step does not exceed the final
result, and for the rest of k we use C(N, k) = C(N, N − k)

13

Greatest common divisor

• GCD(m, n) is the greatest integer that divides both m and

n. So we can use it to maximally simplify the fraction m/n

• how to compute GCD(m, n)?

I. By definition: try all integers from 1 to m/n – too slow.

II. Decompose m and n into prime factors and collect the

common portion and multiply to get GCD – but factoring

large numbers is a very hard computational problem!

14

Greatest common divisor

• Euclid to the rescue (more than 2000 years ago)

unsigned GCD(unsigned m, unsigned n) {

while(m>0) {

n = n%m; swap(m,n);

}

return n;

}

• Runtime – number of iterations: in the worst case logmin(m, n).

• Another form uses subtractions only

15

Determinants

• Direct computation from definition: at least N ! steps

• via Gaussian elimination: get upper-triangular matrix with

the same determinant

• so we get on the order of N3 steps – that is much faster

16

Computing mathematical functions

Conclusions:

• sometimes following definition leads to: numerical overflows

or a hopelessly slow algorithm

• to find a better one: analyze worst/better cases, use alter-

nate definitions, target the worst case, reduce it to the best

case

• Fibonacci sequence – another example.

17

Computational models

• Elementary operations: execution time is bounded by a con-
stant that does not depend on input values. Actual seconds
per operation may be disregarded. Selection of elementary
operations is hardware dependent.

• Arithmetic operations: +, -, *, etcetera

Yes: if integers have bounded number of bits

No: otherwise (unbounded)

• Function calls, memory accesses, e.g. a[i]?

18

Computational models II

• Computational model is determined by: data representation
and storage mechanisms, available elementary operations.

Examples: logic circuits, deterministic finite automata, push-
down automata, Turing machines, C/C++ programs

External memory: two-level disk model – count I/O opera-
tions

• Computational models originate in technologies, physics, bi-
ology, etcetera

• Parallel and distributed computing, optical and DNA com-
puting, analog computing, quantum computing

19

Problems vs instances

• Problem: in the functions domain

• Instance: one possible argument – function input

• For instance, C(N,k) vs C(20, 3)

• Instances can be different: best and worst case, average (ex:
sorting insertion (sensitive) vs selection(insensitive))

• Instances that require average resources are called average
case instances

20

