EECS 477: Introduction to algorithms. Lecture 3

Prof. Igor Guskov
guskov@eecs.umich.edu

September 10, 2002

Lecture outline

- Combinatorics
- Algorithmics
- Computing mathematical functions
- Computational models
- Problems and instances

Combinatorics

- set of N elements: subsets ordered and unordered
- equivalence relation: 2^{N} unordered subsets
- subsets with exactly k elements $C(N, k)=N!/(N-k)!k!$, need to compute without overflows
- rectilinear paths: 1 is up, 0 is right

Top-down design and analysis

- identify relevant invariants and abstractions, reason about these: use known generic techniques/theorems
- remove unnecessary level of detail
- translate results back into domain-specific terms, fill in details
- example: build fence around towns (convex hull, D\&C)

Top-down design and analysis II

- improves reuse
- distinguish coding mistakes from fundamental flaws: who's responsible? CEO: ensure perspective and delegate details. In practice requires experience with application area
- improves learning curve, documentation
- Sample abstraction: graphs, ordering relations
- Sample approach: divide and conquer, greedy, Iazy, ...

Design reuse

- just another aspect of top-down
- primitives that appear over and over again: sorting, searching, string matching
- research resulted in efficient algorithms: implementations took years of work, available in software libraries
- e.g. reformulate your problem in graph terms
- reuse is a good idea: implementations, analysis

Algorithmics

Need to distinguish for complexity analysis:

- Problem: given a function, how can we efficiently compute it?
- Algorithms: recipes to compute a given function
- Programs: formalized recipes understandable by computers

Algorithmics II

- Problem complexity: the best possible algorithm complexity
- Implementation: may not implement a given algorithm correctly - that would be a way to find bugs: $O(n \log n)$ algorithm complexity and $O\left(n^{2}\right)$ running times may indicate a bug

Goals of algorithm analysis

- evaluate and compare existing algorithms: empirically and theoretically, determine winners under different circumstances (e.g. quicksort, mergesort, pigeon-hole-sort)
- evaluate, compare and diagnose given implementations
- analyze the complexity of algorithmic problems: sometimes it is hopeless to look for an algorithm
- can prevent lots of useless programming

Algorihm evaluation

Various parameters

- Time (efficiency, performance): asymptotic, on actual inputs
- Memory (size)
- Ease of programming
- Worst, best, average, typical case
- all of these mean potentially no single winner

Principle of invariance

- Challenge for time complexity analysis: different hardware, different number of instructions per second, but we need some uniform measure of time complexity
- Solution: measure constant time steps - we will be off at most by a constant
- Principle of invariance: any two implementations of an algorithm (when executed on actual computers) will not differ in time complexity by more than a constant (this is not a theorem)

Computing mathematical functions

- $C(N, k)=N!/((N-k)!k!)$ so we need to be careful with N ! try doing 20! - you'll get overflow. On the other hand $C(20,19)=20$ so it's not a problem and $C(20,10)=184756$ is not that big either.
- another try $C(N, k)=(N(N-1) \ldots(N-k+1) / k$!.
- the largest value we get for $k=\operatorname{floor}(N / 2)$
- so we not very successful

N choose k

- $C(N, k+1)=C(N, k)(N-k) /(k+1)$ is easy to prove so:

```
C(N,1) = N;
for i=1 to k-1 do
    C(N,i+1) = ( C(N,i)*(N-i) ) / (i+1);
```

- note that we get integers all the way: otherwise we would be wrong (can also reduce $(N-k) /(k+1)$ to p / q and divide by q first)
- for $k \leq N / 2$ result of each step does not exceed the final result, and for the rest of k we use $C(N, k)=C(N, N-k)$

Greatest common divisor

- $G C D(m, n)$ is the greatest integer that divides both m and n. So we can use it to maximally simplify the fraction m / n
- how to compute $G C D(m, n)$?
I. By definition: try all integers from 1 to m / n - too slow.
II. Decompose m and n into prime factors and collect the common portion and multiply to get GCD - but factoring large numbers is a very hard computational problem!

Greatest common divisor

- Euclid to the rescue (more than 2000 years ago)

```
unsigned GCD(unsigned m, unsigned n) {
        while(m>0) {
            n = n%m; swap (m,n);
        }
    return n;
}
```

- Runtime - number of iterations: in the worst case $\log \min (m, n)$.
- Another form uses subtractions only

Determinants

- Direct computation from definition: at least N ! steps
- via Gaussian elimination: get upper-triangular matrix with the same determinant
- so we get on the order of N^{3} steps - that is much faster

Computing mathematical functions

Conclusions:

- sometimes following definition leads to: numerical overflows or a hopelessly slow algorithm
- to find a better one: analyze worst/better cases, use alternate definitions, target the worst case, reduce it to the best case
- Fibonacci sequence - another example.

Computational models

- Elementary operations: execution time is bounded by a constant that does not depend on input values. Actual seconds per operation may be disregarded. Selection of elementary operations is hardware dependent.
- Arithmetic operations: +, -, *, etcetera

Yes: if integers have bounded number of bits
No: otherwise (unbounded)

- Function calls, memory accesses, e.g. a[i]?

Computational models II

- Computational model is determined by: data representation and storage mechanisms, available elementary operations.
Examples: logic circuits, deterministic finite automata, pushdown automata, Turing machines, $\mathrm{C} / \mathrm{C}++$ programs
External memory: two-level disk model - count I/O operations
- Computational models originate in technologies, physics, biology, etcetera
- Parallel and distributed computing, optical and DNA computing, analog computing, quantum computing

Problems vs instances

- Problem: in the functions domain
- Instance: one possible argument - function input
- For instance, $C(N, k)$ vs $C(20,3)$
- Instances can be different: best and worst case, average (ex: sorting insertion (sensitive) vs selection(insensitive))
- Instances that require average resources are called average case instances

