Lecture outline

• Combinatorics

•Algorithmics

• Computing mathematical functions

• Computational models

• Problems and instances
Combinatorics

- set of N elements: subsets ordered and unordered

- equivalence relation: 2^N unordered subsets

- subsets with exactly k elements $C(N, k) = \frac{N!}{(N-k)!k!}$, need to compute without overflows

- rectilinear paths: 1 is up, 0 is right
Top-down design and analysis

• identify relevant invariants and abstractions, reason about these: use known generic techniques/theorems

• remove unnecessary level of detail

• translate results back into domain-specific terms, fill in details

• example: build fence around towns (convex hull, D&C)
Top-down design and analysis II

- improves reuse

- distinguish coding mistakes from fundamental flaws: who’s responsible? CEO: ensure perspective and delegate details. In practice requires experience with application area

- improves learning curve, documentation

- Sample abstraction: graphs, ordering relations

- Sample approach: divide and conquer, greedy, lazy, ...
Design reuse

- just another aspect of top-down

- primitives that appear over and over again: sorting, searching, string matching

- research resulted in efficient algorithms: implementations took years of work, available in software libraries

- e.g. reformulate your problem in graph terms

- reuse is a good idea: implementations, analysis
Algorithmics

Need to distinguish for complexity analysis:

- **Problem**: given a function, how can we efficiently compute it?
- **Algorithms**: recipes to compute a given function
- **Programs**: formalized recipes understandable by computers
Algorithmics II

- Problem complexity: the best possible algorithm complexity

- Implementation: may not implement a given algorithm correctly – that would be a way to find bugs: $O(n \log n)$ algorithm complexity and $O(n^2)$ running times may indicate a bug
Goals of algorithm analysis

- evaluate and compare existing algorithms: empirically and theoretically, determine winners under different circumstances (e.g. quicksort, mergesort, pigeon-hole-sort)

- evaluate, compare and diagnose given implementations

- analyze the complexity of algorithmic problems: sometimes it is hopeless to look for an algorithm

- can prevent lots of useless programming
Algorithm evaluation

Various parameters

- Time (efficiency, performance): asymptotic, on actual inputs
- Memory (size)
- Ease of programming
- Worst, best, average, typical case
- All of these mean potentially no single winner
Principle of invariance

- Challenge for time complexity analysis: different hardware, different number of instructions per second, but we need some uniform measure of time complexity

- Solution: measure constant time steps – we will be off at most by a constant

- Principle of invariance: any two implementations of an algorithm (when executed on actual computers) will not differ in time complexity by more than a constant (this is not a theorem)
Computing mathematical functions

- $C(N, k) = N! / ((N - k)!k!)$ so we need to be careful with $N!$ try doing $20!$ – you’ll get overflow. On the other hand $C(20, 19) = 20$ so it’s not a problem and $C(20, 10) = 184756$ is not that big either.

- another try $C(N, k) = (N(N - 1) \ldots (N - k + 1)/k!$.

- the largest value we get for $k = \text{floor}(N/2)$

- so we not very successful
N choose k

- \(C(N, k + 1) = C(N, k)(N - k)/(k + 1) \) is easy to prove so:

\[
C(N,1) = N;
\]

for \(i = 1 \) to \(k-1 \) do

\[
C(N,i+1) = \left(C(N,i)*(N-i) \right) / (i+1);
\]

- note that we get integers all the way: otherwise we would be wrong (can also reduce \((N - k)/(k + 1) \) to \(p/q \) and divide by \(q \) first)

- for \(k \leq N/2 \) result of each step does not exceed the final result, and for the rest of \(k \) we use \(C(N, k) = C(N, N - k) \)
Greatest common divisor

- $GCD(m, n)$ is the greatest integer that divides both m and n. So we can use it to maximally simplify the fraction m/n

- how to compute $GCD(m, n)$?

 I. By definition: try all integers from 1 to m/n – too slow.

 II. Decompose m and n into prime factors and collect the common portion and multiply to get GCD – but factoring large numbers is a very hard computational problem!
Greatest common divisor

• Euclid to the rescue (more than 2000 years ago)

```c
 unsigned GCD(unsigned m, unsigned n) {
   while(m>0) {
     n = n%m; swap(m,n);
   }
   return n;
 }
```

• Runtime – number of iterations: in the worst case $\log \min(m, n)$.

• Another form uses subtractions only
Determinants

- Direct computation from definition: at least $N!$ steps
- via Gaussian elimination: get upper-triangular matrix with the same determinant
- so we get on the order of N^3 steps – that is much faster
Computing mathematical functions

Conclusions:

- sometimes following definition leads to: numerical overflows or a hopelessly slow algorithm

- to find a better one: analyze worst/better cases, use alternate definitions, target the worst case, reduce it to the best case

- Fibonacci sequence – another example.
Computational models

- Elementary operations: execution time is bounded by a constant that does not depend on input values. Actual seconds per operation may be disregarded. Selection of elementary operations is hardware dependent.

- Arithmetic operations: +, -, *, etcetera

 Yes: if integers have bounded number of bits

 No: otherwise (unbounded)

- Function calls, memory accesses, e.g. a[i]?
Computational models II

- Computational model is determined by: data representation and storage mechanisms, available elementary operations. Examples: logic circuits, deterministic finite automata, push-down automata, Turing machines, C/C++ programs

- External memory: two-level disk model – count I/O operations

- Computational models originate in technologies, physics, biology, etcetera

- Parallel and distributed computing, optical and DNA computing, analog computing, quantum computing
Problems vs instances

• Problem: in the functions domain

• Instance: one possible argument – function input

• For instance, \(C(N,k) \) vs \(C(20, 3) \)

• Instances can be different: best and worst case, average (ex: sorting insertion (sensitive) vs selection(insensitive))

• Instances that require average resources are called average case instances