EECS 477: Introduction to algorithms.
Lecture 4
TTh 8:30-10am

Prof. Igor Guskov
guskov@eecs.umich.edu
office: 126 ATL building (AI lab)

September 12, 2002
Lecture outline

• Computational models

• Problems and instances

• Sorting

• Amortized analysis: binary counter
• **Lemma:** \(\text{GCD}(m, n) = \text{GCD}(m \% n, n) \) if \(m \% n \neq 0 \)

• Indeed, we have \(m = nt + r \) (\(r := m \% n \)) since every common divisor of \(m \) and \(n \) divides \(r \), and every common divisor of \(n \) and \(r \) divides \(m \).

It follows then that \(\text{GCD}(m, n) \leq \text{GCD}(r, n) \) and \(\text{GCD}(m, n) \geq \text{GCD}(r, n) \) which proves the above claim.

• From the lemma it follows that the Euclid algorithm is correct.
Computational models

- Elementary operations: execution time is bounded by a constant that does not depend on input values. Actual seconds per operation may be disregarded. Selection of elementary operations is hardware dependent.

- Arithmetic operations: +, -, *, etcetera

 Yes: if integers have bounded number of bits

 No: otherwise (unbounded)

- Function calls, memory accesses, e.g. a[i]?
Computational models II

• Computational model is determined by: data representation and storage mechanisms, available elementary operations. Examples: logic circuits, deterministic finite automata, push-down automata, Turing machines, C/C++ programs
External memory: two-level disk model – count I/O operations

• Computational models originate in technologies, physics, biology, etcetera

• Parallel and distributed computing, optical and DNA computing, analog computing, quantum computing
Elementary operations

- Elementary = execution time bounded by a constant

 Example: an algorithm performs A additions, M multiplications, and S assignments; and each addition take no longer than t_A, each multiplication no longer than t_M, and each assignment no longer than t_S. Then the total execution time is bounded by

 $$ T \leq At_A + Mt_M + St_S \leq \max(t_A, t_M, t_S)(A + M + S) $$

 so the number of elementary operations is a decent measure of performance.

- Of course, we need to be careful with what operations are elementary. For instance, prime testing and long integer multiplications are not elementary.
Problems vs instances

• Problem: in the *functions domain*

• Instance: one possible argument – function input

• For instance, C(N,k) vs C(20, 3)

• Instances can be different: best and worst case, average (ex: sorting insertion (sensitive) vs selection(insensitive))

• Instances that require average resources are called *average case instances*
Insertion sort: sensitive

- // grows sorted range
 void insertion_sort(vector<float>& a) {
 for(i=1; i<a.size(); ++i) {
 float x = a[i];
 int j = i - 1;
 while(j >= 0 && a[j] > x) {
 a[j + 1] = a[j];
 --j;
 }
 a[j] = x;
 }
 }
Insertion sort II

- The best case: sorted sequence (body of the while loop never executes). Results in linear number of operations

- The worst case: reverse (body of the while loop executes \(i \) times): \[1 + 2 + \ldots + (n - 1) = (n - 1)n/2 \]

- Average case: still quadratic – average number of times the body of the while loop is performed is roughly \(i/2 \)
Selection sort: insensitive

- // puts minimal element first and moves right
 void selection_sort(vector<float>& a) {
 for(i=0; i<a.size()-1; ++i) {
 int minj = i; float minx = a[i];
 for(int j=i+1; j<a.size(); ++j) {
 if(a[j]<minx) {
 minj = j; minx = a[j];
 }
 }
 a[minj] = a[i];
 a[i] = minx;
 }
 }

Selection sort II

- The best case: quadratic number of if-comparisons

- The worst case: quadratic number of if-comparisons

- Average case: (what else but) quadratic number of if-comparisons

- this algorithm’s performance is insensitive to the input
Quicksort

- // pivot and recurse
 void quick_sort(iterator iBegin, iterator iEnd) {
 iterator iPivot = pivot(iBegin, iEnd); // split
 assert(iPivot!=iEnd);
 quick_sort(iBegin, iPivot);
 ++iPivot;
 quick_sort(iPivot, iEnd);
 }

- Average case performance is $n \log n$, worst case in quadratic
Efficiency

• Is it a big deal?

• Three algorithms: \(A_0 \) takes \(C_0 \log n \) time, \(A_1 \) takes \(C_1 n^d \) time, and \(A_2 \) takes \(C_2 2^n \) time on instance of size \(n \). Let’s say all of them run one day on instance of size \(N \).

• You bought a new machine that runs twice faster: how big of an instance could you process now?

• Generally, \(t = Cf(n) \) so that \(n = f^{-1}(t/C) \) and \(t/C \) doubles.
Efficiency II

- A_0: we had $2^{t/C_0} = N$, now we have $2^{2^{t/C_0}} = N^2$

- A_1: we had $\sqrt{t/C_0} = N$, now we have $\sqrt{2^{t/C_0}} = \sqrt{2}N$

- A_2: we had $\log(t/C_0) = N$, now we have $\log(2^{t/C_0}) = N + 1$

So polynomial algorithms are okay, exponential are not good.
Amortized analysis: binary counter

class CounterT {
 void Increment() {
 j = 0;
 do {
 b[j] = 1 - b[j];
 if(b[j]==1)
 break;
 ++j;
 } while(j<M);
 }

 // the counter’s value is b[0]+2*b[1]+...+2^[M-1]*b[M-1]
 bit b[M];
}

Amortized analysis: binary counter II

• a single call to increment changes as many bits as there are trailing ones in the counter binary representation

• e.g.: Increment(0101111) = 0110000

• An easy upper bound on one call is then constant times M.

• What if we call $bc.Increment()$ repeatedly, N times?
Potential function

- Let $\phi(bc)$ be the number of bits equal to one in bc

- Define the amortized cost of execution $t_i^a = t_i + \phi_i - \phi_{i-1}$. This allows to measure how “dirty” the current state is.

- Call on an even integer has amortized cost $1 + 1 = 2$ (one bit changed, and one more “1” added)
 Call on “11....1” has amortized cost of $M - M = 0$
 Otherwise, a call changes k bits and $k - 1$ of them from one to zero and one from zero to one resulting in $k - (k - 2) = 2$ amortized cost.
Amortized analysis: binary counter III

- Any single call has amortized cost less than 2

- Overall time is \(\sum_{i=1}^{N} t^a_i = \phi_N - \phi_0 + \sum_{i=1}^{N} t_i \)

- Therefore, \(N \) operation take \(2N \) time plus total change in the dirtiness measure which is bounded by \(M \).

- Hence, amortized const on a single cost to increment a counter is \(2 + M/N \) and when \(N \) is big that is constant!