
EECS 477: Introduction to algorithms.

Lecture 4

TTh 8:30-10am

Prof. Igor Guskov

guskov@eecs.umich.edu

office: 126 ATL building (AI lab)

September 12, 2002

1

Lecture outline

• Computational models

• Problems and instances

• Sorting

• Amortized analysis: binary counter

2

GCD

• Lemma: GCD(m, n) = GCD(m%n, n) if m%n 6= 0

• Indeed, we have m = nt+ r (r := m%n) since every common

divisor of m and n divides r, and every common divisor of n

and r divides m.

It follows then that GCD(m, n) ≤ GCD(r, n) and GCD(m, n) ≥
GCD(r, n) which proves the above claim.

• From the lemma it follows that the Euclid algorithm is cor-

rect.

3

Computational models

• Elementary operations: execution time is bounded by a con-
stant that does not depend on input values. Actual seconds
per operation may be disregarded. Selection of elementary
operations is hardware dependent.

• Arithmetic operations: +, -, *, etcetera

Yes: if integers have bounded number of bits

No: otherwise (unbounded)

• Function calls, memory accesses, e.g. a[i]?

4

Computational models II

• Computational model is determined by: data representation
and storage mechanisms, available elementary operations.

Examples: logic circuits, deterministic finite automata, push-
down automata, Turing machines, C/C++ programs

External memory: two-level disk model – count I/O opera-
tions

• Computational models originate in technologies, physics, bi-
ology, etcetera

• Parallel and distributed computing, optical and DNA com-
puting, analog computing, quantum computing

5

Elementary operations

• Elementary = execution time bounded by a constant

Example: an algorithm performs A additions, M multiplica-
tions, and S assignments; and each addition take no longer
than tA, each multiplication no longer than tM , and each as-
signment no longer than tS. Then the total execution time
is bounded by

T ≤ AtA + MtM + StS ≤ max(tA, tM , tS)(A + M + S)

so the number of elementary operations is a decent measure
of performance.

• Of course, we need to be careful with what operations are
elementary. For instance, prime testing and long integer
multiplications are not elementary.

6

Problems vs instances

• Problem: in the functions domain

• Instance: one possible argument – function input

• For instance, C(N,k) vs C(20, 3)

• Instances can be different: best and worst case, average (ex:
sorting insertion (sensitive) vs selection(insensitive))

• Instances that require average resources are called average
case instances

7

Insertion sort: sensitive

• // grows sorted range

void insertion_sort(vector<float>& a) {

for(i=1; i<a.size(); ++i) {

float x = a[i];

int j=i-1;

while(j>=0 && a[j]>x) {

a[j+1] = a[j];

--j;

}

a[j] = x;

}

}

8

Insertion sort II

• The best case: sorted sequence (body of the while loop

never executes). Results in linear number of operations

• The worst case: reverse (body of the while loop executes i

times): 1 + 2 + . . . + (n− 1) = (n− 1)n/2

• Average case: still quadratic – average number of times the

body of the while loop is performed is roughly i/2

9

Selection sort: insensitive

• // puts minimal element first and moves right

void selection_sort(vector<float>& a) {

for(i=0; i<a.size()-1; ++i) {

int minj = i; float minx = a[i];

for(int j=i+1; j<a.size(); ++j) {

if(a[j]<minx) {

minj = j; minx = a[j];

}

}

a[minj] = a[i];

a[i] = minx;

}

}

10

Selection sort II

• The best case: quadratic number of if-comparisons

• The worst case: quadratic number of if-comparisons

• Average case: (what else but) quadratic number of if-comparisons

• this algorithm’s performance is insensitive to the input

11

Quicksort

• // pivot and recurse

void quick_sort(iterator iBegin, iterator iEnd) {

iterator iPivot = pivot(iBegin, iEnd); // split

assert(iPivot!=iEnd);

quick_sort(iBegin, iPivot);

++iPivot;

quick_sort(iPivot, iEnd);

}

• Average case performance is n logn, worst case in quadratic

12

Efficiency

• Is it a big deal?

• Three algorithms: A0 takes C0 logn time, A1 takes C1nd

time, and A2 takes C22
n time on instance of size n. Let’s

say all of them run one day on instance of size N.

• You bought a new machine that runs twice faster: how big

of an instance could you process now?

• Generally, t = Cf(n) so that n = f−1(t/C) and t/C doubles.

13

Efficiency II

• A0: we had 2t/C0 = N , now we have 22t/C0 = N2

• A1: we had
√

t/C0 = N , now we have d
√

2t/C0 = d
√

2N

• A2: we had log(t/C0) = N , now we have log(2t/C0) = N +1

So polynomial algorithms are okay, exponential are not good.

14

Amortized analysis: binary counter

class CounterT {

void Increment() {

j = 0;

do {

b[j] = 1 - b[j];

if(b[j]==1)

break;

++j;

} while(j<M);

}

// the counter’s value is b[0]+2*b[1]+...+2^[M-1]*b[M-1]

bit b[M];

}

15

Amortized analysis: binary counter II

• a single call to increment changes as many bits as there are

trailing ones in the counter binary representation

• e.g.: Increment(0101111) = 0110000

• An easy upper bound on one call is then constant times M .

• What if we call bc.Increment() repeatedly, N times?

16

Potential function

• Let φ(bc) be the number of bits equal to one in bc

• Define the amortized cost of execution tai = ti + φi − φi−1.

This allows to measure how “dirty” the current state is.

• Call on an even integer has amortized cost 1 + 1 = 2 (one

bit changed, and one more “1” added)

Call on “11....1” has amortized cost of M −M = 0

Otherwise, a call changes k bits and k− 1 of them from one

to zero and one from zero to one resulting in k− (k− 2) = 2

amortized cost.

17

Amortized analysis: binary counter III

• Any single call has amortized cost less than 2

• Overall time is
∑N

i=1 tai = φN − φ0 +
∑N

i=1 ti

• Therefore, N operation take 2N time plus total change in

the dirtiness measure which is bounded by M .

• Hence, amortized const on a single cost to increment a

counter is 2 + M/N and when N is big that is constant!

18

