Lecture outline

- Asymptotic notation: applies to worst, best, average case performance, amortized analysis; on the other count applies to runtime, memory, other measures of performance
 - Big-Oh: $O(f(n))$ (“on the order of”, upper bound):
 - Big-Omega: $\Omega(f(n))$ (“on the order of”, lower bound)
 - Big-Theta: $\Theta(f(n))$ (“on the order of”, asymptotically tight bound)
 - Conditional (restricted parameter values allowed)
 - Multiple parameters
 - Operations with asymptotics
Idea of Asymptotics

- Recall
 - Need hardware-independent algorithm comparisons: which ones are equivalent, which one is better than others (both design and analysis would benefit)
 - Base comparisons on the notion of an elementary operation
 - Principle of Invariance:
 steps can only be off by a constant and that is independent of the instance size.
 This is an example of equivalence relation
 - Limits: $f(n) = n^2$ eventually outgrows $g(n) = 100n$. This is an example of ordering relation: $g(n) = O(f(n))$.

3
big-Oh

- Consider functions like this $f : \mathbb{N} \to \mathbb{R}^+$ (maps from positive naturals to positive reals).
- $O(f(n))$ is the set of all functions $t(n)$ satisfying the property:
 $$\exists C > 0 \exists K \in \mathbb{N} \forall n > K \ t(n) \leq Cf(n)$$
- We then can write $g(n) \in O(f(n))$
- But usually write $g(n) = O(f(n))$
- This means: $g(n)$ does not grow faster than $f(n)$
big-Oh examples

• Prove from definition
 • \(n = O(n) \)
 • \(100n = O(n) \)
 • \(n = O(n^2) \)
 • \(n = O(n^2/20) \)
 • \(C_1n^k + C_2 = O(n^{k+p}) \) for \(p \geq 0 \)
big-Oh useful facts

Definition is fine but these are helpful

• if \(f(n) = O(g(n)) \) then \(O(f(n)) \subset O(g(n)) \)
• if \(f(n) \leq g(n) \) then \(O(f(n)) \subset O(g(n)) \)
• \(f(n) = O(\max(f(n), g(n))) \)
• \(f(n) + g(n) = O(f(n) + g(n)) = O(\max(f(n), g(n))) \)
• if \(f(n) = O(g(n)) \) and \(h(n) = O(j(n)) \) then \(f(n) + h(n) = O(g(n) + j(n)) \)
• \(f(n)g(n) = O(f(n)g(n)) \)
• if \(f(n) = O(g(n)) \) then \(f(n) + g(n) = O(g(n)) \) and \(O(f(n) + g(n)) = O(g(n)) \)
big-Oh examples

Prove that

- \(n^3 + 10n^2 + 3n + 1 = O(n^3) \)
- \(n^3 = O(n^3 + 10n^2 + 3n + 1) \)
- so the ordering is not strict
big-Oh more conventions

- $g(n) = O(f(n))$:
 \[\exists C > 0 \\exists K \in \mathbb{N} \forall n > K \ g(n) \leq Cf(n) \]

- Generalize it so $f(n)$ and $g(n)$ may be negative or even undefined for small values of n

- Choose high K and high C will simplify arguments

- Often it is good to only work with eventually non-decreasing functions.
 Of course, this will not work for $O(1)$

- Ex: prove $5n + 100/n = O(12n)$
big-Oh via limits

- If \(\lim f(n)/g(n) \) exists and is not zero or infinity then \(f(n) = O(g(n)) \) and \(g(n) = O(f(n)) \)

- If \(\lim f(n)/g(n) = 0 \) then \(f(n) = O(g(n)) \) but NOT \(g(n) = O(f(n)) \)

- If \(\lim f(n)/g(n) = \infty \) then \(g(n) = O(f(n)) \) but NOT \(f(n) = O(g(n)) \)

- note that you can use L’Hopital rule, e.g. \(n^5 = O(2^n) \)
Good news

Usually it is not too complicated

- Poly(n), poly(log(n)), exponential functions, and factorial are most common functions in algorithm analysis
- big-Oh relations can be remembered case by case (and those below are strict)
 - const $= \mathcal{O}(\text{poly-log})$
 - poly-log $= \mathcal{O}(\text{poly})$
 - poly-lower $= \mathcal{O}(\text{poly-higher})$
 - poly $= \mathcal{O}(\text{exp})$
 - all of the above are in $\mathcal{O}(n!)$
- Several weird slow growing functions
Relational view

- Big-Oh acts as “less than or equivalent to”
- Reflexive: \(f(n) = O(f(n)) \)
- Anti-symmetric: \(f(n) = O(g(n)) \) and \(g(n) = O(f(n)) \) implies that \(f(n) \) is equivalent to \(g(n) \)
- Transitive: \(f(n) = O(g(n)) \) and \(g(n) = O(h(n)) \) implies that \(f(n) = O(h(n)) \)
- Some big-Oh statements are trivial and useless, for instance \(f(n) = O(n!) \) is often true but not helpful
big-Omega

- $g(n) = \Omega(f(n))$ iff $f(n) = O(g(n))$
 or to be precise $\exists d > 0 \ \exists K \in \mathbb{N} \ \forall n > K \ (g(n) \geq f(n))$
- Ω acts like “greater than or equivalent to”
- same expressive power as with big-Oh
- convenient notationally: “algorithm takes time in $\Omega(n^2)$ versus "n^2 is in O(algorithm's time)".
- dual properties: max to min, $>$ to $<$, zero to infinity sometimes
big-Theta

- \(\Theta(f(n)) = O(f(n)) \cap \Omega(f(n)) \)
- If \(\lim f(n)/g(n) \) exists and is neither 0 nor \(\infty \) then \(f(n) = \Theta(g(n)) \).
- If the limit exists and is 0 or \(\infty \) then \(f(n) \neq O(g(n)) \)
- \(\Theta \) is an equivalence relation: \(\leq \) and \(\geq \) valid at the same time
- If \(f(n) = \Theta(g(n)) \) then of course the two weaker results are also true: \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \)
- If you see a \(\Theta \) result, do not settle for a weaker \(O \)-based result!!!
An example

Prove that

$$\sum_{i=1}^{n} i^k = \Theta(n^{k+1})$$

Two ways: O is easy

For Ω use $n/2$ argument.
Conditional notation

- Initially useful to do a simpler restricted case
- Long integer multiplication assume that the sizes are powers of two
- Or for binary search – can claim complexity $O(\log n|n = 2^p)$ (note the notation!)
- Once the special case is handled, generalize it. This is often easy because complexity is an eventually non-decreasing function often. Thus $O(\log n)$ propagates to all values of n
- This is easy for smooth eventually non-decreasing functions
- $f(n)$ is b-smooth iff $f(bn) = O(f(n))$
- n^k is smooth, 2^n is not – prove!
Multiple parameters

- Two sorted arrays of size K and M
- Problem: Count all repetitions and sort the result
- I: set-intersection $O(\min(K, M))$
- II: binary-search elements of the smaller array in the larger one $O(\min(M, K) \log(\max(M, K)))$
- Formally:
 \[\exists c > 0 \ \exists m_0 \in \mathbb{N} \ \forall k > k_0 \ \forall m > m_0 \ g(k, m) \leq cf(k, m). \]
Operations on asymptotic notation

- $O(f(n)) + O(g(n)) = O(f(n) + g(n))$
- also works for other operations
- $n^{O(1)}$ denotes all the functions dominated by Cn^k, this is basically polynomial growth functions
- $f(n) \in n^{O(1)}$ means that $\exists \alpha(n) \in O(1)$ such that $f(n) = n^{\alpha(n)}$