EECS 477: Introduction to algorithms. Lecture 5

Prof. Igor Guskov
guskov@eecs.umich.edu

September 19, 2002

Lecture outline

- Asymptotic notation: applies to worst, best, average case performance, amortized analysis; on the other count applies to runtime, memory, other measures of performance
- Big-Oh: $O(f(n))$ ("on the order of", upper bound):
- Big-Omega: $\Omega(f(n))$ ("on the order of", lower bound)
- Big-Theta: $\Theta(f(n)$) ("on the order of", asymptotically tight bound)
- Conditional (restricted parameter values allowed)
- Multiple parameters
- Operations with asymptotics

Idea of Asymptotics

- Recall
- Need hardware-independent algorithm comparisons: which ones are equivalent, which one is better than others (both design and analysis would benefit)
- Base comparisons on the notion of an elementary operation
- Principle of Invariance:
steps can only be off by a constant and that is independent of the instance size.
This is an example of equivalence relation
- Limits: $f(n)=n^{2}$ eventually outgrows $g(n)=100 n$. This is an example of ordering relation: $g(n)=O(f(n))$.

big-Oh

- Consider functions like this $f: \mathbf{N} \rightarrow \mathbf{R}^{+}$(maps from positive naturals to positive reals).
- $O(f(n))$ is the set of all functions $t(n)$ satisfying the property: $\exists C>0 \exists K \in \mathbf{N} \forall n>K t(n) \leq C f(n)$
- We then can write $g(n) \in O(f(n))$
- But usually write $g(n)=O(f(n))$
- This means: $g(n)$ does not grow faster than $f(n)$

big-Oh examples

- Prove from definition
- $n=O(n)$
- $100 n=O(n)$
- $n=O\left(n^{2}\right)$
- $n=O\left(n^{2} / 20\right)$
- $C_{1} n^{k}+C_{2}=O\left(n^{k+p}\right)$ for $p \geq 0$

big-Oh useful facts

Definition is fine but these are helpful

- if $f(n)=O(g(n))$ then $O(f(n)) \subset O(g(n))$
- if $f(n) \leq g(n)$ then $O(f(n)) \subset O(g(n))$
- $f(n)=O(\max (f(n), g(n)))$
- $f(n)+g(n)=O(f(n)+g(n))=O(\max (f(n), g(n))$
- if $f(n)=O(g(n))$ and $h(n)=O(j(n))$ then $f(n)+h(n)=$ $O(g(n)+j(n))$
- $f(n) g(n)=O(f(n) g(n))$
- if $f(n)=O(g(n))$ then $f(n)+g(n)=O(g(n))$ and $O(f(n)+$ $g(n))=O(g(n))$

big-Oh examples

Prove that

- $n^{3}+10 n^{2}+3 n+1=O\left(n^{3}\right)$
- $n^{3}=O\left(n^{3}+10 n^{2}+3 n+1\right)$
- so the ordering is not strict

big-Oh more conventions

- $g(n)=O(f(n))$: $\exists C>0 \exists K \in \mathbf{N} \forall n>K g(n) \leq C f(n)$
- Generalize it so $f(n)$ and $g(n)$ may be negative or even undefined for small values of n
- Choose high K and high C will simplify arguments
- Often it is good to only work with eventually non-decreasing functions.
Of course, this will not work for $O(1)$
- Ex: prove $5 n+100 / n=O(12 n)$

big-Oh via limits

- If $\lim f(n) / g(n)$ exists and is not zero or infinity then $f(n)=$ $O(g(n))$ and $g(n)=O(f(n))$
- If $\lim f(n) / g(n)=0$ then $f(n)=O(g(n))$ but NOT $g(n)=$ $O(f(n))$
- If $\lim f(n) / g(n)=\infty$ then $g(n)=O(f(n))$ but NOT $f(n)=$ $O(g(n))$
- note that you can use L'Hopital rule, e.g. $n^{5}=O\left(2^{n}\right)$

Good news

Usually it is not too complicated

- Poly(n), poly(log(n)), exponential functions, and factorial are most common functions in algorithm analysis
- big-Oh relations can be remembered case by case (and those below are strict)
- const $=O$ (poly-log)
- poly-log $=\mathrm{O}$ (poly)
- poly-lower = O(poly-higher)
- poly $=O$ (exp)
- all of the above are in $O(n!)$
- Several weird slow growing functions

Relational view

- Big-Oh acts as "less than or equivalent to"
- Reflexive: $f(n)=O(f(n))$
- Anti-symmetric: $f(n)=O(g(n))$ and $g(n)=O(f(n))$ implies that $f(n)$ is equivalent to $g(n)$
- Transitive: $f(n)=O(g(n))$ and $g(n)=O(h(n))$ implies that $f(n)=O(h(n))$
- Some big-Oh statements are trivial and useless, for instance $f(n)=O(n!)$ is often true but not helpful

big-Omega

- $g(n)=\Omega(f(n))$ iff $f(n)=O(g(n))$ or to be precise $\exists d>0 \exists K \in \mathbf{N} \forall n>K(g(n) \geq f(n))$
- Ω acts like "greater than or equivalent to"
- same expressive power as with big-Oh
- convenient notationally: "algorithm takes time in $\Omega\left(n^{2}\right)$ versus " n^{2} is in O(algorithm's time)".
- dual properties: max to min, > to <, zero to infinity sometimes

big-Theta

- $\Theta(f(n))=O(f(n)) \cap \Omega(f(n))$
- If $\lim f(n) / g(n)$ exists and is neither 0 nor ∞ then $f(n)=$ $\Theta(g(n))$.
- if the limit exists and is 0 or ∞ then $f(n) \neq O(g(n))$
- Θ is an equivalence relation: \leq and \geq valid at the same time
- If $f(n)=\Theta(g(n))$ then of course the two weaker results are also true: $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$
- If you see a Θ result, do not settle for a weaker O-based result!!!

An example

Prove that

$$
\sum_{i=1}^{n} i^{k}=\Theta\left(n^{k+1}\right)
$$

Two ways: O is easy

For Ω use $n / 2$ argument.

Conditional notation

- Initially useful to do a simpler restricted case
- Long integer multiplication assume that the sizes are powers of two
- Or for binary search - can claim complexity $O\left(\log n \mid n=2^{p}\right)$ (note the notation!)
- Once the special case is handled, generalize it. This is often easy because complexity is an eventually non-decreasing function often. Thus $O(\log n)$ propagates to all values of n
- This is easy for smooth eventually non-decreasing functions
- $f(n)$ is b-smooth iff $f(b n)=O(f(n))$
- n^{k} is smooth, 2^{n} is not - prove!

Multiple parameters

- Two sorted arrays of size K and M
- Problem: Count all repetitions and sort the result
- I: set-intersection $O(\min (K, M))$
- II: binary-search elements of the smaller array in the larger one $O(\min (M, K) \log (\max (M, K))$
- Formally:
$\exists c>0 \exists m_{0} \in \mathbf{N} k_{0} \in \mathbf{N} \forall k>k_{0} \forall m>m_{0} g(k, m) \leq c f(k, m)$.

Operations on asymptotic notation

- $O(f(n))+O(g(n))=O(f(n)+g(n))$
- also works for other operations
- $n^{O(1)}$ denotes all the functions dominated by $C n^{k}$, this is basically polynomial growth functions
- $f(n) \in n^{O(1)}$ means that $\exists \alpha(n) \in O(1)$ such that $f(n)=n^{\alpha(n)}$

