
EECS 477: Introduction to algorithms.

Lecture 5

Prof. Igor Guskov

guskov@eecs.umich.edu

September 19, 2002

1

Lecture outline

• Asymptotic notation: applies to worst, best, average case

performance, amortized analysis; on the other count applies

to runtime, memory, other measures of performance

• Big-Oh: O(f(n)) (“on the order of”, upper bound):

• Big-Omega: Ω(f(n)) (“on the order of”, lower bound)

• Big-Theta: Θ(f(n)) (“on the order of”, asymptotically

tight bound)

• Conditional (restricted parameter values allowed)

• Multiple parameters

• Operations with asymptotics

2

Idea of Asymptotics

• Recall

• Need hardware-independent algorithm comparisons: which
ones are equivalent, which one is better than others (both
design and analysis would benefit)

• Base comparisons on the notion of an elementary opera-
tion

• Principle of Invariance:
steps can only be off by a constant and that is independent
of the instance size.
This is an example of equivalence relation

• Limits: f(n) = n2 eventually outgrows g(n) = 100n. This
is an example of ordering relation: g(n) = O(f(n)).

3

big-Oh

• Consider functions like this f : N → R+ (maps from positive

naturals to positive reals).

• O(f(n)) is the set of all functions t(n) satisfying the property:

∃C > 0 ∃K ∈ N ∀n > K t(n) ≤ Cf(n)

• We then can write g(n) ∈ O(f(n))

• But usually write g(n) = O(f(n))

• This means: g(n) does not grow faster than f(n)

4

big-Oh examples

• Prove from definition

• n = O(n)

• 100n = O(n)

• n = O(n2)

• n = O(n2/20)

• C1nk + C2 = O(nk+p) for p ≥ 0

5

big-Oh useful facts

Definition is fine but these are helpful

• if f(n) = O(g(n)) then O(f(n)) ⊂ O(g(n))

• if f(n) ≤ g(n) then O(f(n)) ⊂ O(g(n))

• f(n) = O(max(f(n), g(n)))

• f(n) + g(n) = O(f(n) + g(n)) = O(max(f(n), g(n))

• if f(n) = O(g(n)) and h(n) = O(j(n)) then f(n) + h(n) =
O(g(n) + j(n))

• f(n)g(n) = O(f(n)g(n))

• if f(n) = O(g(n)) then f(n) + g(n) = O(g(n)) and O(f(n) +
g(n)) = O(g(n))

6

big-Oh examples

Prove that

• n3 + 10n2 + 3n + 1 = O(n3)

• n3 = O(n3 + 10n2 + 3n + 1)

• so the ordering is not strict

7

big-Oh more conventions

• g(n) = O(f(n)):

∃C > 0 ∃K ∈ N ∀n > K g(n) ≤ Cf(n)

• Generalize it so f(n) and g(n) may be negative or even unde-

fined for small values of n

• Choose high K and high C will simplify arguments

• Often it is good to only work with eventually non-decreasing

functions.

Of course, this will not work for O(1)

• Ex: prove 5n + 100/n = O(12n)

8

big-Oh via limits

• If lim f(n)/g(n) exists and is not zero or infinity then f(n) =

O(g(n)) and g(n) = O(f(n))

• If lim f(n)/g(n) = 0 then f(n) = O(g(n)) but NOT g(n) =

O(f(n))

• If lim f(n)/g(n) = ∞ then g(n) = O(f(n)) but NOT f(n) =

O(g(n))

• note that you can use L’Hopital rule, e.g. n5 = O(2n)

9

Good news

Usually it is not too complicated

• Poly(n), poly(log(n)), exponential functions, and factorial are
most common functions in algorithm analysis

• big-Oh relations can be remembered case by case (and those
below are strict)

• const = O(poly-log)

• poly-log = O(poly)

• poly-lower = O(poly-higher)

• poly = O(exp)

• all of the above are in O(n!)

• Several weird slow growing functions

10

Relational view

• Big-Oh acts as “less than or equivalent to”

• Reflexive: f(n) = O(f(n))

• Anti-symmetric: f(n) = O(g(n)) and g(n) = O(f(n)) implies

that f(n) is equivalent to g(n)

• Transitive: f(n) = O(g(n)) and g(n) = O(h(n)) implies that

f(n) = O(h(n))

• Some big-Oh statements are trivial and useless, for instance

f(n) = O(n!) is often true but not helpful

11

big-Omega

• g(n) = Ω(f(n)) iff f(n) = O(g(n))

or to be precise ∃d > 0 ∃K ∈ N ∀n > K (g(n) ≥ f(n))

• Ω acts like “greater than or equivalent to”

• same expressive power as with big-Oh

• convenient notationally: “algorithm takes time in Ω(n2) ver-

sus “n2 is in O(algorithm’s time)”.

• dual properties: max to min, > to <, zero to infinity some-

times

12

big-Theta

• Θ(f(n)) = O(f(n)) ∩Ω(f(n))

• If lim f(n)/g(n) exists and is neither 0 nor ∞ then f(n) =

Θ(g(n)).

• if the limit exists and is 0 or ∞ then f(n) 6= O(g(n))

• Θ is an equivalence relation: ≤ and ≥ valid at the same time

• If f(n) = Θ(g(n)) then of course the two weaker results are

also true: f(n) = O(g(n)) and f(n) = Ω(g(n))

• If you see a Θ result, do not settle for a weaker O-based

result!!!

13

An example

Prove that
n∑

i=1

ik = Θ(nk+1)

Two ways: O is easy

For Ω use n/2 argument.

14

Conditional notation

• Initially useful to do a simpler restricted case

• Long integer multiplication assume that the sizes are powers
of two

• Or for binary search – can claim complexity O(logn|n = 2p)
(note the notation!)

• Once the special case is handled, generalize it. This is of-
ten easy because complexity is an eventually non-decreasing
function often. Thus O(logn) propagates to all values of n

• This is easy for smooth eventually non-decreasing functions

• f(n) is b-smooth iff f(bn) = O(f(n))

• nk is smooth, 2n is not – prove!

15

Multiple parameters

• Two sorted arrays of size K and M

• Problem: Count all repetitions and sort the result

• I: set-intersection O(min(K, M))

• II: binary-search elements of the smaller array in the larger

one O(min(M, K) log(max(M, K))

• Formally:

∃c > 0 ∃m0 ∈ N k0 ∈ N ∀k > k0 ∀m > m0 g(k, m) ≤ cf(k, m).

16

Operations on asymptotic notation

• O(f(n)) + O(g(n)) = O(f(n) + g(n))

• also works for other operations

• nO(1) denotes all the functions dominated by Cnk, this is

basically polynomial growth functions

• f(n) ∈ nO(1) means that ∃α(n) ∈ O(1) such that f(n) = nα(n)

17

