
EECS 477: Introduction to algorithms.

Lecture 6

Prof. Igor Guskov

guskov@eecs.umich.edu

September 24, 2002

1

Lecture outline

• Finish up with asymptotic notation

• Asymptotic analysis of programs

• Analyzing control structures: sequencing, for-loops, recursive

calls, while- and repeat-loops

• Using a barometer

• Examples

• Average case analysis vs amortized analysis

2

Conditional notation

• Initially useful to do a simpler restricted case

• Long integer multiplication assume that the sizes are powers
of two

• Or for binary search – can claim complexity O(logn|n = 2p)
(note the notation!)

• Once the special case is handled, generalize it. This is of-
ten easy because complexity is an eventually non-decreasing
function often. Thus O(logn) propagates to all values of n

• This is easy for smooth eventually non-decreasing functions

• f(n) is b-smooth iff f(bn) = O(f(n))

• nk is smooth, 2n is not – prove!

3

Smoothness

• If f(n) is b-smooth for some integer b ≥ 2 then it is smooth

(for all other such b’s). That is, f(n) ≤ cf(bn) and f(n) ≤
f(n + 1) imply f(n) ≤ c′f(an)

• Smoothness rule: If t(n) ∈ Θ(f(n)|n = bk) and f is smooth

and t is eventually non-decreasing, then t(n) ∈ Θ(f(n)) un-

conditionally.

• e.g. if t(n) ∈ Θ(n2|n = 2k) and ev. non-decreasing then

t(n) ∈ Θ(n2) unconditionally (same for O and Ω.

• Take n′ = bblogb nc then

t(n) ≤ t(bn′) ≤ af(bn′) = af(bn′) ≤ acf(n′) ≤ acf(n);

that is t(n) ∈ O(f(n)) unconditionally.

4

Multiple parameters

• Two sorted arrays of size K and M

• Problem: Count all repetitions and sort the result

• I: scan both O(max(K, M))

• II: binary-search elements of the smaller array in the larger

one O(min(M, K) log(max(M, K))

• Formally:

∃c > 0 ∃m0 ∈ N k0 ∈ N ∀k > k0 ∀m > m0 g(k, m) ≤ cf(k, m).

5

Operations on asymptotic notation

• O(f(n)) + O(g(n)) = O(f(n) + g(n))

• also works for other operations

• nO(1) denotes all the functions dominated by Cnk, this is

basically polynomial growth functions

• f(n) ∈ nO(1) means that ∃α(n) ∈ O(1) such that f(n) = nα(n)

6

Asymptotic analysis of programs

• We assume that our algorithms are represented by programs,

e.g. in pseudocode, C, C++ etc.

• Memory and runtime

• Traditionally, runtime analysis comes first

• If Ω(f(n)) memory is used then Ω(f(n)) is required (UN-

LESS we allocating memory without initialization)

• Basic idea: bottom-up analysis: from elementary operations

to control structures and further upwards

• Pitfalls: insufficient specification, hidden complexity, unstruc-

turedness (goto’s)

7

Example: hiding complexity

struct prime_iterator {

int operator++(int) {

do { ++m_k; } while(!is_prime(m_k));

return m_k;

}

int m_k;

}

bool is_prime() { // check primality }

int count_primes(int n) {

prime_iterator i;

int count = 0;

for(i=2; i<n; ++i) ++count;

return count;

}

8

Analyzing control structures

• Time/memory complexity of simple steps

• Assemble elementary steps into structures

• Sequencing

• for-loops

• recursive calls

• while-loops

• Go on to more involved steps

9

Sequencing

• Sequential composition: assume two steps, assume they are

independent

• Runtime of a sequential composition of two steps is the sum

of runtimes

• Memory taken by sequential composition: anywhere from max

to sum: depends on whether memory allocated by the first

step can be reused by the second

• Recall O(max(f, g)) = O(f + g)

• Compare to “parallel composition” where memory is a sum

and runtime can be min to max

10

For-loops

• for(i=1; i<n; ++i) P(i)

• Does at least as much work as P(i) repeated n times

• Complexity at least n times that of P(i)

• Additional work: counter maintenance

• Counter maintenance can be ignored if the body of the loop

is asymptotically more or as expensive

• C++ iterator’s example is not rare: for complex containers

• For dynamic loop conditions analysis may be harder

11

For-loops

• unsigned FibIter(unsigned n) {

unsigned j=1, i=0, k;

for(k=0; k<n; ++k) {

j += i;

i = j - i;

}

return j;

}

• Prove by induction that j is n-th Fibonacci number, there are

n loop iterations, O(n)?

12

For-loops

• Complexity of each step

• k-th Fibonacci number has O(k) digits

• Each step takes at least linear time

• Hence, the whole procedure takes quadratic time:

n∑
k=0

k = O(n2).

13

Recursive calls

• Complexity analyzed by composing an equation and solving it

• unsigned Fibrec(unsigned n) {

if(n<2) return n;

else return Fibrec(n-1) + Fibrec(n-2);

}

• Recurrence:

T (n) = a for n < 2

T (n) = T (n − 1) + T (n − 2) + h(n) otherwise

• Later we’ll see that this takes exponential time!

14

While-loops

• Difficult analyse the number of iterations

• Trick: find a decreasing function: if it decreases by more than

one every time then look at the value

• Binary search: distance between the right and the left index

decreases with every step until the end by 2x

• page 103 for more details

15

Barometer

• Barometer is a step that is taken at least as many times as

any other step.

• Asymptotic complexity allows to drop constant factors and

ignore all the steps except barometers

• unsigned FibIter(unsigned n) {

unsigned j=1, i=0, k;

for(k=0; k<n; ++k) {

j += i; // barometer

i = j - i;

}

return j;

}

16

Barometer

• Especially convenient for the analysis of nested loops

• Last phase of pigeonhole sorting

i = 0;

for(k=1; k<s; ++k) {

while(U[k]!=0) {

++i;

T[i] = k;

--U[k];

}

}

• Cannot use inner instructions as barometers because some-
times they are not taken

• Complexity of the above is O(n + s)

17

Greatest common divisor

• Example of while loop analysis

unsigned GCD(unsigned m, unsigned n) {

while(m>0) {

n = n%m; swap(m,n);

}

return n;

}

• Runtime – number of iterations: in the worst case 2 logmin(m, n)

– progress occurs every second iteration

18

Projects

• Individual or teams of up to three people

• You can suggest a topic – need to be approved

• Involves: algorithm design/analysis, implementation likely, should

not be entirely subsumed by published results

• Template project: choose NP-hard problem (say from Garey

and Johnson), implement/analyze exact algorithm (time/memory

complexity), design/implement heuristics/online algorithm with

O(nd) and analyse its memory complexity

19

