Lecture outline

- Finish up with asymptotic notation
- Asymptotic analysis of programs
- Analyzing control structures: sequencing, for-loops, recursive calls, while- and repeat-loops
- Using a barometer
- Examples
- Average case analysis vs amortized analysis
Conditional notation

• Initially useful to do a simpler restricted case
• Long integer multiplication assume that the sizes are powers of two
• Or for binary search – can claim complexity $O(\log n | n = 2^p)$ (note the notation!)
• Once the special case is handled, generalize it. This is often easy because complexity is an eventually non-decreasing function often. Thus $O(\log n)$ propagates to all values of n
• This is easy for smooth eventually non-decreasing functions
 • $f(n)$ is b-smooth iff $f(bn) = O(f(n))$
• n^k is smooth, 2^n is not – prove!
Smoothness

- If \(f(n) \) is \(b \)-smooth for some integer \(b \geq 2 \) then it is smooth (for all other such \(b \)'s). That is, \(f(n) \leq cf(bn) \) and \(f(n) \leq f(n + 1) \) imply \(f(n) \leq c'f(an) \)

- **Smoothness rule:** If \(t(n) \in \Theta(f(n)|n = b^k) \) and \(f \) is smooth and \(t \) is eventually non-decreasing, then \(t(n) \in \Theta(f(n)) \) unconditionally.

- e.g. if \(t(n) \in \Theta(n^2|n = 2^k) \) and ev. non-decreasing then \(t(n) \in \Theta(n^2) \) unconditionally (same for \(O \) and \(\Omega \)).

- Take \(n' = b[^{\lfloor \log_b n \rfloor}] \) then
 \[
 t(n) \leq t(bn') \leq af(bn') = af(bn') \leq acf(n') \leq acf(n);
 \]
 that is \(t(n) \in O(f(n)) \) unconditionally.
Multiple parameters

- Two sorted arrays of size K and M
- Problem: Count all repetitions and sort the result
- I: scan both $O(\max(K, M))$
- II: binary-search elements of the smaller array in the larger one $O(\min(M, K) \log(\max(M, K)))$
- Formally:

$$\exists c > 0 \ \exists m_0 \in \mathbb{N} \ \exists k_0 \in \mathbb{N} \ \forall k > k_0 \ \forall m > m_0 \ g(k, m) \leq cf(k, m).$$
Operations on asymptotic notation

• $O(f(n)) + O(g(n)) = O(f(n) + g(n))$

• also works for other operations

• $n^{O(1)}$ denotes all the functions dominated by Cn^k, this is basically polynomial growth functions

• $f(n) \in n^{O(1)}$ means that $\exists \alpha(n) \in O(1)$ such that $f(n) = n^{\alpha(n)}$
Asymptotic analysis of programs

- We assume that our algorithms are represented by programs, e.g. in pseudocode, C, C++ etc.

- Memory and runtime
 - Traditionally, runtime analysis comes first
 - If $\Omega(f(n))$ memory is used then $\Omega(f(n))$ is required (UN-LESS we allocating memory without initialization)

- Basic idea: bottom-up analysis: from elementary operations to control structures and further upwards

- Pitfalls: insufficient specification, hidden complexity, unstructuredness (goto's)
Example: hiding complexity

struct prime_iterator {
 int operator++(int) {
 do { ++m_k; } while(!is_prime(m_k));
 return m_k;
 }
 int m_k;
}
bool is_prime() { // check primality }

int count_primes(int n) {
 prime_iterator i;
 int count = 0;
 for(i=2; i<n; ++i) ++count;
 return count;
}
Analyzing control structures

- Time/memory complexity of simple steps
- Assemble elementary steps into structures
 - Sequencing
 - for-loops
 - recursive calls
 - while-loops
- Go on to more involved steps
Sequencing

• Sequential composition: assume two steps, assume they are *independent*

• Runtime of a sequential composition of two steps is the sum of runtimes

• Memory taken by sequential composition: anywhere from max to sum: depends on whether memory allocated by the first step can be reused by the second

• Recall $O(\max(f, g)) = O(f + g)$

• Compare to “parallel composition” where memory is a sum and runtime can be min to max
For-loops

- `for(i=1; i<n; ++i) P(i)`
- Does at least as much work as `P(i)` repeated `n` times
- Complexity *at least* `n` times that of `P(i)`
- Additional work: counter maintenance
- Counter maintenance can be ignored if the body of the loop is asymptotically more or as expensive
- C++ iterator’s example is not rare: for complex containers
- For dynamic loop conditions analysis may be harder
For-loops

- unsigned FibIter(unsigned n) {
 unsigned j=1, i=0, k;
 for(k=0; k<n; ++k) {
 j += i;
 i = j - i;
 }
 return j;
}

- Prove by induction that j is n-th Fibonacci number, there are n loop iterations, $O(n)$?
For-loops

- Complexity of each step
- k-th Fibonacci number has $O(k)$ digits
- Each step takes at least linear time
- Hence, the whole procedure takes quadratic time:

$$\sum_{k=0}^{n} k = O(n^2).$$
Recursive calls

- Complexity analyzed by composing an equation and solving it
- unsigned Fibrec(unsigned n) {
 if(n<2) return n;
 else return Fibrec(n-1) + Fibrec(n-2);
}
- Recurrence:
 \(T(n) = a \) for \(n < 2 \)
 \(T(n) = T(n-1) + T(n-2) + h(n) \) otherwise
- Later we’ll see that this takes exponential time!
While-loops

- Difficult analyse the number of iterations
- Trick: find a decreasing function: if it decreases by more than one every time then look at the value
- Binary search: distance between the right and the left index decreases with every step until the end by 2x
- page 103 for more details
Barometer

- *Barometer* is a step that is taken at least as many times as any other step.

- Asymptotic complexity allows to drop constant factors and ignore all the steps except barometers.

- unsigned FibIter(unsigned n) {
 unsigned j=1, i=0, k;
 for(k=0; k<n; ++k) {
 j += i; // barometer
 i = j - i;
 }
 return j;
}
Barometer

- Especially convenient for the analysis of nested loops
- Last phase of pigeonhole sorting

```c
i = 0;
for(k=1; k<s; ++k) {
    while(U[k]!=0) {
        ++i;
        T[i] = k;
        --U[k];
    }
}
```

- Cannot use inner instructions as barometers because sometimes they are not taken
- Complexity of the above is $O(n + s)$
Greatest common divisor

• Example of while loop analysis

```c
unsigned GCD(unsigned m, unsigned n) {
    while(m>0) {
        n = n%m; swap(m,n);
    }
    return n;
}
```

• Runtime – number of iterations: in the worst case 2 \(\log \min(m, n) \)
 – progress occurs every second iteration
Projects

- Individual or teams of up to three people
- You can suggest a topic – need to be approved
- Involves: algorithm design/analysis, implementation likely, should not be entirely subsumed by published results
- Template project: choose NP-hard problem (say from Garey and Johnson), implement/analyze exact algorithm (time/memory complexity), design/implement heuristics/online algorithm with $O(n^d)$ and analyse its memory complexity