EECS 477: Introduction to algorithms. Lecture 6

Prof. Igor Guskov
guskov@eecs.umich.edu

September 24, 2002

Lecture outline

- Finish up with asymptotic notation
- Asymptotic analysis of programs
- Analyzing control structures: sequencing, for-loops, recursive calls, while- and repeat-loops
- Using a barometer
- Examples
- Average case analysis vs amortized analysis

Conditional notation

- Initially useful to do a simpler restricted case
- Long integer multiplication assume that the sizes are powers of two
- Or for binary search - can claim complexity $O\left(\log n \mid n=2^{p}\right)$ (note the notation!)
- Once the special case is handled, generalize it. This is often easy because complexity is an eventually non-decreasing function often. Thus $O(\log n)$ propagates to all values of n
- This is easy for smooth eventually non-decreasing functions
- $f(n)$ is b-smooth iff $f(b n)=O(f(n))$
- n^{k} is smooth, 2^{n} is not - prove!

Smoothness

- If $f(n)$ is b-smooth for some integer $b \geq 2$ then it is smooth (for all other such b 's). That is, $f(n) \leq c f(b n)$ and $f(n) \leq$ $f(n+1)$ imply $f(n) \leq c^{\prime} f(a n)$
- Smoothness rule: If $t(n) \in \Theta\left(f(n) \mid n=b^{k}\right)$ and f is smooth and t is eventually non-decreasing, then $t(n) \in \Theta(f(n))$ unconditionally.
- e.g. if $t(n) \in \Theta\left(n^{2} \mid n=2^{k}\right)$ and ev. non-decreasing then $t(n) \in \Theta\left(n^{2}\right)$ unconditionally (same for O and Ω.
- Take $n^{\prime}=b^{\left\lfloor\log _{b} n\right\rfloor}$ then

$$
t(n) \leq t\left(b n^{\prime}\right) \leq a f\left(b n^{\prime}\right)=a f\left(b n^{\prime}\right) \leq a c f\left(n^{\prime}\right) \leq a c f(n)
$$

that is $t(n) \in O(f(n))$ unconditionally.

Multiple parameters

- Two sorted arrays of size K and M
- Problem: Count all repetitions and sort the result
- I: scan both $O(\max (K, M))$
- II: binary-search elements of the smaller array in the larger one $O(\min (M, K) \log (\max (M, K))$
- Formally:
$\exists c>0 \exists m_{0} \in \mathbf{N} k_{0} \in \mathbf{N} \forall k>k_{0} \forall m>m_{0} g(k, m) \leq c f(k, m)$.

Operations on asymptotic notation

- $O(f(n))+O(g(n))=O(f(n)+g(n))$
- also works for other operations
- $n^{O(1)}$ denotes all the functions dominated by $C n^{k}$, this is basically polynomial growth functions
- $f(n) \in n^{O(1)}$ means that $\exists \alpha(n) \in O(1)$ such that $f(n)=n^{\alpha(n)}$

Asymptotic analysis of programs

- We assume that our algorithms are represented by programs, e.g. in pseudocode, C, C++ etc.
- Memory and runtime
- Traditionally, runtime analysis comes first
- If $\Omega(f(n)$) memory is used then $\Omega(f(n))$ is required (UNLESS we allocating memory without initialization)
- Basic idea: bottom-up analysis: from elementary operations to control structures and further upwards
- Pitfalls: insufficient specification, hidden complexity, unstructuredness (goto's)

Example: hiding complexity

```
struct prime_iterator {
    int operator++(int) {
        do { ++m_k; } while(!is_prime(m_k));
        return m_k;
    }
    int m_k;
}
bool is_prime() { // check primality }
int count_primes(int n) {
    prime_iterator i;
    int count = 0;
    for(i=2; i<n; ++i) ++count;
    return count;
}
```


Analyzing control structures

- Time/memory complexity of simple steps
- Assemble elementary steps into structures
- Sequencing
- for-loops
- recursive calls
- while-loops
- Go on to more involved steps

Sequencing

- Sequential composition: assume two steps, assume they are independent
- Runtime of a sequential composition of two steps is the sum of runtimes
- Memory taken by sequential composition: anywhere from max to sum: depends on whether memory allocated by the first step can be reused by the second
- Recall $O(\max (f, g))=O(f+g)$
- Compare to "parallel composition" where memory is a sum and runtime can be min to max

For-loops

- $\operatorname{for}(\mathrm{i}=1 ; \mathrm{i}<\mathrm{n} ;+\mathrm{i}) \mathrm{P}(\mathrm{i})$
- Does at least as much work as $\mathrm{P}(\mathrm{i})$ repeated n times
- Complexity at least n times that of $\mathrm{P}(\mathrm{i})$
- Additional work: counter maintenance
- Counter maintenance can be ignored if the body of the loop is asymptotically more or as expensive
- C++ iterator's example is not rare: for complex containers
- For dynamic loop conditions analysis may be harder

For-loops

- unsigned FibIter (unsigned n) \{

```
    unsigned j=1, i=0, k;
    for(k=0; k<n; ++k) {
        j += i;
        i = j - i;
        }
        return j;
```

 \}
 - Prove by induction that j is n-th Fibonacci number, there are n loop iterations, $O(n)$?

For-loops

- Complexity of each step
- k-th Fibonacci number has $O(k)$ digits
- Each step takes at least linear time
- Hence, the whole procedure takes quadratic time:

$$
\sum_{k=0}^{n} k=O\left(n^{2}\right)
$$

Recursive calls

- Complexity analyzed by composing an equation and solving it
- unsigned Fibrec(unsigned n) \{

```
    if(n<2) return n;
    else return Fibrec(n-1) + Fibrec(n-2);
}
```

- Recurrence:

$$
\begin{aligned}
& T(n)=a \text { for } n<2 \\
& T(n)=T(n-1)+T(n-2)+h(n) \text { otherwise }
\end{aligned}
$$

- Later we'll see that this takes exponential time!

While-loops

- Difficult analyse the number of iterations
- Trick: find a decreasing function: if it decreases by more than one every time then look at the value
- Binary search: distance between the right and the left index decreases with every step until the end by $2 x$
- page 103 for more details

Barometer

- Barometer is a step that is taken at least as many times as any other step.
- Asymptotic complexity allows to drop constant factors and ignore all the steps except barometers
- unsigned FibIter(unsigned n) \{ unsigned $j=1, i=0, k ;$
for $(\mathrm{k}=0$; $\mathrm{k}<\mathrm{n}$; ++k) \{
j += i; // barometer
i = j-i;
\}
return j;
\}

Barometer

- Especially convenient for the analysis of nested loops
- Last phase of pigeonhole sorting

```
i = 0;
for(k=1; k<s; ++k) {
    while(U[k]!=0) {
        ++i;
        T[i] = k;
        --U[k];
    }
}
```

- Cannot use inner instructions as barometers because sometimes they are not taken
- Complexity of the above is $O(n+s)$

Greatest common divisor

- Example of while loop analysis

```
    unsigned GCD(unsigned m, unsigned n) {
        while(m>0) {
        n = n%m; swap (m,n);
        }
        return n;
        }
```

- Runtime - number of iterations: in the worst case $2 \log \min (m, n)$
- progress occurs every second iteration

Projects

- Individual or teams of up to three people
- You can suggest a topic - need to be approved
- Involves: algorithm design/analysis, implementation likely, should not be entirely subsumed by published results
- Template project: choose NP-hard problem (say from Garey and Johnson), implement/analyze exact algorithm (time/memory complexity), design/implement heuristics/online algorithm with $O\left(n^{d}\right)$ and analyse its memory complexity

