EECS 477: Introduction to algorithms. Lecture 7

Prof. Igor Guskov
guskov@eecs.umich.edu

September 26, 2002

Lecture outline

- Recursion issues
- Recurrence relations
- Examples

Recursion: factorial

- unsigned fact_rec(unsigned n) \{
return ($\mathrm{n}==0$? 1 : $\mathrm{n} * \mathrm{fact}$ _rec ($\mathrm{n}-1$));
\}
- unsigned fact_iter(unsigned n) \{
unsigned result = 1;
for (unsigned $k=0 ; k<n$; $++k$)
result *= k;
return result;
\}

Recursion

- Recursive algorithms invoke themselves (maybe indirectly)
- May never terminate (need initial conditions/base case), then the result is not defined
- Similar to induction proofs - lend themselves nicely for things defined recursively
- Challenging for algorithm analysis: cannot use sequential composition/loops, cannot inline function calls

Recursion: advantages

- Algorithmic versions of inductive definitions and proofs are easy: for instance many algorithms on trees or mathematical functions on integers
- Especially, algorithm correctness: induction proofs
- GCD, factorial, tree traversal, etcetera
- Easy and fast implementation: directly from description, when you have little precious time, exam/deadline for noncritical parts

Recursion: usual drawbacks

- Complexity analysis is not as clear as correctness
- Time: they call themselves
- Memory: implicit program stack usage
- What actually happens when a function is called:
- Caller: pushes local variables and arguments onto the program stack
- Callee start-up: pops its arguments from program stack
- Callee return: pushes return value onto the program stack
- Caller: pops return value and local variables
- More data may be pushed onto the program stack: registers

Recursion

- Time complexity handled by recurrencies
- Memory complexity handled by careful accounting
- Statically allocated memory goes onto program stack
- but not dynamically allocated
- Rule of thumb: limit static memory allocation in functions that are called many times, e.g. recursive

Recursion drawbacks

- In practice, recursive versions are often slower
- Overhead of static variables and registers
- Any recursive algorithm can be implemented without recursion using a single explicit stack - without slowdown (sometimes more convenient to use several stacks). Ex: think of evaluating arithmetic expressions - calculator
- Rule of thumb: remove recursion from time-critical sections of your code
- Program stack is very limited and may overflow: so do not rely on it when implementing recursive algorithms for large datasets, e.g. graphs (unless you have explicit support for that kind of adventures in your system)

Recursion: misc

- Tail recursion: a single recursion call at the end - each call will reuse the same memory frame for local variables and pass the result directly to the caller
- Example:

```
int fact(int n) { return fact_tail(n, 1); }
int fact_tail(int n, int f) {
    if(n==0) return 1;
    return fact_tail(n-1, n*f);
}
```

- compare it to the simple recursive version: no need to keep local vars
- Another idea: memorize results on frequent instances, like dynamic programming

Recurrencies

- Equations where functions are unknowns (like difference eqs)
- Time complexity as unknown is of interest
- Ex: Factorial $t(n)=t(n-1)+c_{1}, t(0)=c_{0}$
- Solution: $t(n)=c_{1} * n+c_{0}=O(n)$
- A similar recurrence $t(n)=3 * t(n-1)+c_{1}, t(0)=c_{0}$ but the solution is $\Omega\left(3^{n}\right)$, beware that some constants matter!!!
- A basic method: guess the answer and prove by induction

Intelligent guesswork

- $t(0)=0, t(n)=4 t(n / 3)+n$
- $t(0)=0, t(1)=1, t(3)=7, t(9)=37, t(27)=175, \mathrm{hmmm} \ldots$
- $t(1)=1, t(3)=4 * 1+3, t(9)=4^{2}+4 * 3+3^{2}, \ldots$
- Here's the pattern: $t\left(3^{k}\right)=\sum_{i=0}^{k} 3^{i} 4^{k-i}=4^{k} \sum_{i=0}^{k}(3 / 4)^{i}=$ $4^{k+1}-43^{k}$
- So for $n=3^{k}$ we get $t(n)=4\left(n^{\log _{3} 4}-n\right)=\Theta\left(n^{\log _{3} 4}\right)$ then use smoothness rule

Linear recurrencies

- Recursive Fibonacci $t(n)=c_{1}+t(n-1)+t(n-2)$ and $t(0)=$ $t(1)=c_{0}$
- Need closed form solution
- And this is a linear recurrence!!! makes sense for recursion
- General form: $a_{0} t(n)+a_{1} t(n-1)+\ldots+a_{k} t(n-k)=f(n)$ plus initial conditions on $t(0), \ldots, t(k-1)$
- a_{k} are constants
- Start with homogeneous case: $f(n)=0$: solutions form linear space (can add and scale them)

Linear recurrencies: characteristic polynomial

- Consider solution of exponential kind $t(n)=x^{n}$, substitute into equation to get

$$
a_{0} x^{n}+a_{1} x^{n-1}+\ldots a_{k} x^{n-k}=0
$$

or

$$
a_{0} x^{k}+a_{1} x^{k-1}+\ldots a_{k}=0
$$

- Find roots of the above and assume they are different r_{1}, \ldots, r_{k}. Then

$$
t(n)=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}+\ldots+c_{k} r_{k}^{n}
$$

is a general solution form, find constants from initial conditions

Linear recurrencies: multiple roots

- for a root r of multiplicity m we get m fundamental solutions

$$
r^{n}, n r^{n}, \ldots, n^{m-1} r^{n}
$$

- Again, find constants from initial conditions

Linear recurrencies: inhomogeneity

- Inhomogeneous are important!

$$
a_{0} t(n)+a_{1} t(n-1)+\ldots+a_{k} t(n-k)=b^{n} p(n)
$$

restricted version where $p(n)$ is a polynomial of degree d.

- Solution involves forming the implied homogeneous recurrence:

$$
\left(a_{0} x^{k}+a_{1} x^{k-1}+\ldots a_{k}\right)(x-b)^{d+1}=0
$$

- General solution is $t(n)=\sum_{i} \sum_{j=0}^{m_{i}-1} c_{i j} n^{j} r_{i}^{n}$ then substitute into the original recurrence and initial condition
- Example: 4.7.8 on page 128

