Lecture outline

- Recursion issues
- Recurrence relations
- Examples
Recursion: factorial

- unsigned fact_rec(unsigned n) {
 return (n==0 ? 1 : n*fact_rec(n-1));
}

- unsigned fact_iter(unsigned n) {
 unsigned result = 1;
 for(unsigned k=0; k<n; ++k)
 result *= k;
 return result;
}
Recursion

- Recursive algorithms invoke themselves (*maybe indirectly*)
- May never terminate (need initial conditions/base case), then the result is not defined
- Similar to induction proofs – lend themselves nicely for things defined recursively
- Challenging for algorithm analysis: cannot use sequential composition/loops, cannot inline function calls
Recursion: advantages

- Algorithmic versions of inductive definitions and proofs are easy: for instance many algorithms on trees or mathematical functions on integers
- Especially, algorithm correctness: induction proofs
- GCD, factorial, tree traversal, etcetera
- Easy and fast implementation: directly from description, when you have little precious time, exam/deadline for noncritical parts
Recursion: usual drawbacks

- Complexity analysis is not as clear as correctness
 - Time: they call themselves
 - Memory: implicit program stack usage
- What actually happens when a function is called:
 - Caller: pushes local variables and arguments onto the program stack
 - Callee start-up: pops its arguments from program stack
 - Callee return: pushes return value onto the program stack
 - Caller: pops return value and local variables
 - More data may be pushed onto the program stack: registers
Recursion

• Time complexity handled by recurrences
• Memory complexity handled by careful accounting
 • Statically allocated memory goes onto program stack
 • but not dynamically allocated
• Rule of thumb: limit static memory allocation in functions that are called many times, e.g. recursive
Recursion drawbacks

- In practice, recursive versions are often slower
 - Overhead of static variables and registers
 - Any recursive algorithm can be implemented without recursion using a single explicit stack – without slowdown (sometimes more convenient to use several stacks). Ex: think of evaluating arithmetic expressions – calculator
 - Rule of thumb: remove recursion from time-critical sections of your code
- Program stack is very limited and may overflow: so do not rely on it when implementing recursive algorithms for large datasets, e.g. graphs (unless you have explicit support for that kind of adventures in your system)
Recursion: misc

- Tail recursion: a *single* recursion call at the end – each call will reuse the same memory frame for local variables and pass the result *directly* to the caller

- Example:

```c
int fact(int n) { return fact_tail(n, 1); }
int fact_tail(int n, int f) {
    if(n==0) return 1;
    return fact_tail(n-1, n*f);
}
```

- compare it to the simple recursive version: no need to keep local vars

- Another idea: memorize results on frequent instances, like dynamic programming
Recurrences

- Equations where functions are unknowns (like difference eqs)
- *Time complexity* as unknown is of interest
- Ex: Factorial \(t(n) = t(n - 1) + c_1, t(0) = c_0 \)
- Solution: \(t(n) = c_1 \times n + c_0 = O(n) \)
- A similar recurrence \(t(n) = 3 \times t(n - 1) + c_1, t(0) = c_0 \) but the solution is \(\Omega(3^n) \), beware that *some constants matter***!!
- A basic method: guess the answer and prove by induction
Intelligent guesswork

• $t(0) = 0$, $t(n) = 4t(n/3) + n$
• $t(0) = 0, t(1) = 1, t(3) = 7, t(9) = 37, t(27) = 175$, hmmm...
• $t(1) = 1, t(3) = 4 \times 1 + 3, t(9) = 4^2 + 4 \times 3 + 3^2, \ldots$
• Here’s the pattern: $t(3^k) = \sum_{i=0}^{k} 3^i 4^{k-i} = 4^k \sum_{i=0}^{k} (3/4)^i = 4^{k+1} - 43^k$
• So for $n = 3^k$ we get $t(n) = 4(n^{\log_3 4} - n) = \Theta(n^{\log_3 4})$ then use smoothness rule
Linear recurrences

- Recursive Fibonacci $t(n) = c_1 + t(n - 1) + t(n - 2)$ and $t(0) = t(1) = c_0$
- Need closed form solution
- And this is a linear recurrence!!! makes sense for recursion
- General form: $a_0 t(n) + a_1 t(n - 1) + \ldots + a_k t(n - k) = f(n)$ plus initial conditions on $t(0), \ldots, t(k - 1)$
- a_k are constants
- Start with homogeneous case: $f(n) = 0$: solutions form linear space (can add and scale them)
Linear recurrences: characteristic polynomial

- Consider solution of exponential kind $t(n) = x^n$, substitute into equation to get

 $a_0 x^n + a_1 x^{n-1} + \ldots + a_k x^{n-k} = 0$

 or

 $a_0 x^k + a_1 x^{k-1} + \ldots + a_k = 0$

- Find roots of the above and assume they are different r_1, \ldots, r_k. Then

 $t(n) = c_1 r_1^n + c_2 r_2^n + \ldots + c_k r_k^n$

 is a general solution form, find constants from initial conditions
Linear recurrences: multiple roots

• for a root \(r \) of multiplicity \(m \) we get \(m \) fundamental solutions
 \[r^n, nr^n, \ldots, n^{m-1}r^n \]

• Again, find constants from initial conditions
Linear recurrences: inhomogeneity

- Inhomogeneous are important!

\[a_0 t(n) + a_1 t(n - 1) + \ldots + a_k t(n - k) = b^n p(n), \]

restricted version where \(p(n) \) is a polynomial of degree \(d \).

- Solution involves forming the implied homogeneous recurrence:

\[(a_0 x^k + a_1 x^{k-1} + \ldots a_k)(x - b)^{d+1} = 0 \]

- General solution is \(t(n) = \sum_i \sum_0^{m_i-1} c_{ij} n^j r_i^n \) then substitute into the original recurrence and initial condition

- Example: 4.7.8 on page 128