
EECS 477: Introduction to algorithms.

Lecture 7

Prof. Igor Guskov

guskov@eecs.umich.edu

September 26, 2002

1

Lecture outline

• Recursion issues

• Recurrence relations

• Examples

2

Recursion: factorial

• unsigned fact_rec(unsigned n) {

return (n==0 ? 1 : n*fact_rec(n-1));

}

• unsigned fact_iter(unsigned n) {

unsigned result = 1;

for(unsigned k=0; k<n; ++k)

result *= k;

return result;

}

3

Recursion

• Recursive algorithms invoke themselves (maybe indirectly)

• May never terminate (need initial conditions/base case), then

the result is not defined

• Similar to induction proofs – lend themselves nicely for things

defined recursively

• Challenging for algorithm analysis: cannot use sequential com-

position/loops, cannot inline function calls

4

Recursion: advantages

• Algorithmic versions of inductive definitions and proofs are

easy: for instance many algorithms on trees or mathematical

functions on integers

• Especially, algorithm correctness: induction proofs

• GCD, factorial, tree traversal, etcetera

• Easy and fast implementation: directly from description, when

you have little precious time, exam/deadline for noncritical

parts

5

Recursion: usual drawbacks

• Complexity analysis is not as clear as correctness

• Time: they call themselves

• Memory: implicit program stack usage

• What actually happens when a function is called:

• Caller: pushes local variables and arguments onto the pro-
gram stack

• Callee start-up: pops its arguments from program stack

• Callee return: pushes return value onto the program stack

• Caller: pops return value and local variables

• More data may be pushed onto the program stack: regis-
ters

6

Recursion

• Time complexity handled by recurrencies

• Memory complexity handled by careful accounting

• Statically allocated memory goes onto program stack

• but not dynamically allocated

• Rule of thumb: limit static memory allocation in functions

that are called many times, e.g. recursive

7

Recursion drawbacks

• In practice, recursive versions are often slower

• Overhead of static variables and registers

• Any recursive algorithm can be implemented without re-
cursion using a single explicit stack – without slowdown
(sometimes more convenient to use several stacks). Ex:
think of evaluating arithmetic expressions – calculator

• Rule of thumb: remove recursion from time-critical sec-
tions of your code

• Program stack is very limited and may overflow: so do not
rely on it when implementing recursive algorithms for large
datasets, e.g. graphs (unless you have explicit support for
that kind of adventures in your system)

8

Recursion: misc

• Tail recursion: a single recursion call at the end – each call
will reuse the same memory frame for local variables and pass
the result directly to the caller

• Example:

int fact(int n) { return fact_tail(n, 1); }

int fact_tail(int n, int f) {

if(n==0) return 1;

return fact_tail(n-1, n*f);

}

• compare it to the simple recursive version: no need to keep
local vars

• Another idea: memorize results on frequent instances, like
dynamic programming

9

Recurrencies

• Equations where functions are unknowns (like difference eqs)

• Time complexity as unknown is of interest

• Ex: Factorial t(n) = t(n− 1) + c1, t(0) = c0

• Solution: t(n) = c1 ∗ n + c0 = O(n)

• A similar recurrence t(n) = 3 ∗ t(n− 1)+ c1, t(0) = c0 but the

solution is Ω(3n), beware that some constants matter !!!

• A basic method: guess the answer and prove by induction

10

Intelligent guesswork

• t(0) = 0, t(n) = 4t(n/3) + n

• t(0) = 0, t(1) = 1, t(3) = 7, t(9) = 37, t(27) = 175, hmmm...

• t(1) = 1, t(3) = 4 ∗ 1 + 3, t(9) = 42 + 4 ∗ 3 + 32, . . .

• Here’s the pattern: t(3k) =
∑k

i=0 3i4k−i = 4k ∑k
i=0(3/4)i =

4k+1 − 43k

• So for n = 3k we get t(n) = 4(nlog3 4 − n) = Θ(nlog3 4) then

use smoothness rule

11

Linear recurrencies

• Recursive Fibonacci t(n) = c1 + t(n−1)+ t(n−2) and t(0) =

t(1) = c0

• Need closed form solution

• And this is a linear recurrence!!! makes sense for recursion

• General form: a0t(n) + a1t(n − 1) + . . . + akt(n − k) = f(n)

plus initial conditions on t(0), . . . , t(k − 1)

• ak are constants

• Start with homogeneous case: f(n) = 0: solutions form linear

space (can add and scale them)

12

Linear recurrencies: characteristic polynomial

• Consider solution of exponential kind t(n) = xn, substitute

into equation to get

a0xn + a1xn−1 + . . . akxn−k = 0

or

a0xk + a1xk−1 + . . . ak = 0

• Find roots of the above and assume they are different r1, . . . , rk.

Then

t(n) = c1rn
1 + c2rn

2 + . . . + ckrn
k

is a general solution form, find constants from initial condi-

tions

13

Linear recurrencies: multiple roots

• for a root r of multiplicity m we get m fundamental solutions

rn, nrn, . . . , nm−1rn

• Again, find constants from initial conditions

14

Linear recurrencies: inhomogeneity

• Inhomogeneous are important!

a0t(n) + a1t(n− 1) + . . . + akt(n− k) = bnp(n),

restricted version where p(n) is a polynomial of degree d.

• Solution involves forming the implied homogeneous recur-

rence:

(a0xk + a1xk−1 + . . . ak)(x− b)d+1 = 0

• General solution is t(n) =
∑

i
∑mi−1

j=0 cijn
jrn

i then substitute

into the original recurrence and initial condition

• Example: 4.7.8 on page 128

15

