EECS 477: Introduction to algorithms.

Lecture 8

Prof. Igor Guskov
guskov@eecs.umich.edu

October 1, 2002

Lecture outline

e Recurrencies:. inhomogeneous case
e Master theorem

e Examples

Recursive Fibonacci

e Integer fib_rec(unsigned n) {
if (n<2)
return 1;
else

return fib_rec(n-1) + fib_rec(n-2);

}
e t(n) =cin+t(n—1)+t(n—22): a linear recurrence

e t(0) =t(1) =cg

Linear recurrencies

e General form: agt(n) + a1t(n — 1) + ... + art(n — k) = f(n)
plus initial conditions on ¢(0),...,t(k—1)

e a, are constants

e Start with homogeneous case: f(n) = 0: solutions form linear
space (can add and scale them)

Linear recurrencies: characteristic polynomial

e Consider solution of exponential kind t(n) = z™, substitute
into equation to get

apx” + alxn_l 4 ... akazn_k =0
or
aoa:'k + ala:'k_l +...ap. =0
e Find roots of the above and assume they are different r1,...,rg.
Then

t(n) =c1ry +cor5 + ...+ cpry
IS @ general solution form, constants from initial conditions

e for a root r of multiplicity m we get m fundamental solutions

Y L PR

Linear recurrencies: inhomogeneity

e Inhomogeneous are important!
aot(n) +a1t(n — 1) 4+ ... 4+ agt(n — k) = b"p(n),
restricted version where p(n) is a polynomial of degree d.

e Solution involves forming the implied homogeneous recur-
rence:

(apz” + a1z 1 4+ ... ap)(x —)Tl =0

e General solution is t(n) = ZZZJ 01 ci;n’ r then substitute
into the original recurrence and initial cond|t|on

Linear recurrencies: general inhomogeneity

e More general inhomogeneity
agt(n) +ait(n—1)+...+agt(n—k) = byp1(n) +bsp2(n) + ..
restricted version where p;(n) is a polynomial of degree d;.

e Solution involves forming the implied homogeneous recur-
rence:

(aoxk + a4 ap)(x — b)1tz —py)d2Tl =0

e General solution is t(n) = 2223 01 ci;n’ r then substitute
into the original recurrence and initial condltlon

Merge sort

e void merge_sort(data* inlist, data* outlist, unsigned n) {
data* temp = new datal[n];
unsigned half = n/2;
merge_sort(inlist, temp, half);
merge_sort(inlist+half, temp+half, n-half);
merge_lists(temp, half, temp+half, n-half, outlist);

¥

e Recurrence relation?
e \What if we split into d parts?

e Is it going to improve the performance?

Master theorem

e Divide and conquer tool

e T(n) = aT(n/b) + f(n)

e a>1and b > 1 are constants, f(n) is eventually positive, can
have [n/b] or |n/b]

e Three cases ():
f(n) = O(nl°9%a=¢€) for some € > 0 then T'(n) = O(nlo9wa):
f(n) = &(nlowa) then T(n) = O(n!%9%%ogn);

f(n) = Q(nlowet€) some € > 0 and af(n/b) < cf(n) for some
constant ¢ < 1 and sufficiently large n then T'(n) = ©(f(n)).

Master theorem: examples

e T(n) = 9T(n/3) +n
e a=9, b=3, logya =10939 =2
e f(n) =0(n2¢) holds

e Then T(n) = ©(n?)

10

Master theorem: merge sort

e T(n) =dT(n/d) +n
e a=d, b=d, logya =loggd=1
e f(n) =©(n) holds

e Then T'(n) = ©(nlogn)

Master theorem: misc

e if instead of T'(n) = ... we have T'(n) < ... then we can only
make O(...) claims

e Third case condition: af(n/b) < cf(n) — f(IN) should grow
steadily, e.g. f(n) = n?(1 + n?sin?(n)) will not work.

e There are gaps in the theorem like in case 1 f(n) = O(nlo%2)
IS not enough to conclude anything...

e Proof is optional

12

Master theorem: more examples

e I'(n) =T(2n/3)+ 1 : case 2, T(n) = ©(logn)
e T'(n) =3T(n/4) +nlogn: case 3, T(n) = ©(nlogn)
e T'(n) =2T(n/2) + nlogn: case 3 does not apply!!!

13

Change of variable

Often helps

T(n) =2T([v/n]) +logn

n=2™m

S(m) =T(2™) so that S(m) =25(m/2) +m

now go back to n to obtain T'(n) = lognloglogn

14

Change of range

e T(1) =1/3,T(n) = nT?(n/2)
e n=2" |eads to S(m) = 2MS2%(m — 1)

e change of range: U(m) = log S(m)

15

