
EECS 477: Introduction to algorithms.

Lecture 8

Prof. Igor Guskov

guskov@eecs.umich.edu

October 1, 2002

1



Lecture outline

• Recurrencies: inhomogeneous case

• Master theorem

• Examples

2



Recursive Fibonacci

• Integer fib_rec(unsigned n) {

if(n<2)

return 1;

else

return fib_rec(n-1) + fib_rec(n-2);

}

• t(n) = c1n + t(n− 1) + t(n− 2): a linear recurrence

• t(0) = t(1) = c0

3



Linear recurrencies

• General form: a0t(n) + a1t(n − 1) + . . . + akt(n − k) = f(n)

plus initial conditions on t(0), . . . , t(k − 1)

• ak are constants

• Start with homogeneous case: f(n) = 0: solutions form linear

space (can add and scale them)

4



Linear recurrencies: characteristic polynomial

• Consider solution of exponential kind t(n) = xn, substitute
into equation to get

a0xn + a1xn−1 + . . . akxn−k = 0

or

a0xk + a1xk−1 + . . . ak = 0

• Find roots of the above and assume they are different r1, . . . , rk.
Then

t(n) = c1rn
1 + c2rn

2 + . . . + ckrn
k

is a general solution form, constants from initial conditions

• for a root r of multiplicity m we get m fundamental solutions

rn, nrn, . . . , nm−1rn

5



Linear recurrencies: inhomogeneity

• Inhomogeneous are important!

a0t(n) + a1t(n− 1) + . . . + akt(n− k) = bnp(n),

restricted version where p(n) is a polynomial of degree d.

• Solution involves forming the implied homogeneous recur-

rence:

(a0xk + a1xk−1 + . . . ak)(x− b)d+1 = 0

• General solution is t(n) =
∑

i
∑mi−1

j=0 cijn
jrn

i then substitute

into the original recurrence and initial condition

6



Linear recurrencies: general inhomogeneity

• More general inhomogeneity

a0t(n)+a1t(n−1)+ . . .+akt(n−k) = bn
1p1(n)+ bn

2p2(n)+ . . . ,

restricted version where pi(n) is a polynomial of degree di.

• Solution involves forming the implied homogeneous recur-

rence:

(a0xk + a1xk−1 + . . . ak)(x− b1)
d1+1(x− b2)

d2+1 . . . = 0

• General solution is t(n) =
∑

i
∑mi−1

j=0 cijn
jrn

i then substitute

into the original recurrence and initial condition

7



Merge sort

• !!

• void merge_sort(data* inlist, data* outlist, unsigned n) {

data* temp = new data[n];

unsigned half = n/2;

merge_sort(inlist, temp, half);

merge_sort(inlist+half, temp+half, n-half);

merge_lists(temp, half, temp+half, n-half, outlist);

}

• Recurrence relation?

• What if we split into d parts?

• Is it going to improve the performance?

8



Master theorem

• Divide and conquer tool

• T (n) = aT (n/b) + f(n)

• a ≥ 1 and b > 1 are constants, f(n) is eventually positive, can

have dn/be or bn/bc

• Three cases ():

f(n) = O(nlogba−ε) for some ε > 0 then T (n) = Θ(nlogba);

f(n) = Θ(nlogba) then T (n) = Θ(nlogbalogn);

f(n) = Ω(nlogba+ε) some ε > 0 and af(n/b) ≤ cf(n) for some

constant c < 1 and sufficiently large n then T (n) = Θ(f(n)).

9



Master theorem: examples

• T (n) = 9T (n/3) + n

• a = 9, b = 3, logb a = log3 9 = 2

• f(n) = O(n2−ε) holds

• Then T (n) = Θ(n2)

10



Master theorem: merge sort

• T (n) = dT (n/d) + n

• a = d, b = d, logb a = logd d = 1

• f(n) = Θ(n) holds

• Then T (n) = Θ(n logn)

11



Master theorem: misc

• if instead of T (n) = . . . we have T (n) ≤ . . . then we can only

make O(. . .) claims

• Third case condition: af(n/b) ≤ cf(n) – f(N) should grow

steadily, e.g. f(n) = n2(1 + n2sin2(n)) will not work.

• There are gaps in the theorem like in case 1 f(n) = O(nlogba)

is not enough to conclude anything...

• Proof is optional

12



Master theorem: more examples

• T (n) = T (2n/3) + 1 : case 2, T (n) = Θ(logn)

• T (n) = 3T (n/4) + n logn: case 3, T (n) = Θ(n logn)

• T (n) = 2T (n/2) + n logn: case 3 does not apply!!!

13



Change of variable

• Often helps

• T (n) = 2T (b
√

nc) + logn

• n = 2m

• S(m) = T (2m) so that S(m) = 2S(m/2) + m

• now go back to n to obtain T (n) = logn log logn

14



Change of range

• T (1) = 1/3, T (n) = nT2(n/2)

• n = 2m leads to S(m) = 2mS2(m− 1)

• change of range: U(m) = logS(m)

15


