EECS 477: Introduction to algorithms.
Lecture 8

Prof. Igor Guskov
guskov@eecs.umich.edu

October 1, 2002
Lecture outline

- Recurrences: inhomogeneous case
- Master theorem
- Examples
Recursive Fibonacci

- Integer fib_rec(unsigned n) {
 if(n<2)
 return 1;
 else
 return fib_rec(n-1) + fib_rec(n-2);
}

- $t(n) = c_1 n + t(n-1) + t(n-2)$: a linear recurrence

- $t(0) = t(1) = c_0$
Linear recurrences

• General form: \(a_0 t(n) + a_1 t(n - 1) + \ldots + a_k t(n - k) = f(n) \)
 plus initial conditions on \(t(0), \ldots, t(k-1) \)

• \(a_k \) are constants

• Start with homogeneous case: \(f(n) = 0 \): solutions form linear space (can add and scale them)
Linear recurrences: characteristic polynomial

- Consider solution of exponential kind \(t(n) = x^n \), substitute into equation to get

\[
a_0 x^n + a_1 x^{n-1} + \ldots + a_k x^{n-k} = 0
\]

or

\[
a_0 x^k + a_1 x^{k-1} + \ldots + a_k = 0
\]

- Find roots of the above and assume they are different \(r_1, \ldots, r_k \). Then

\[
t(n) = c_1 r_1^n + c_2 r_2^n + \ldots + c_k r_k^n
\]

is a general solution form, constants from initial conditions

- for a root \(r \) of multiplicity \(m \) we get \(m \) fundamental solutions

\[r^n, \ n r^n, \ldots, n^{m-1} r^n\]
Linear recurrences: inhomogeneity

- Inhomogeneous are important!

\[a_0 t(n) + a_1 t(n-1) + \ldots + a_k t(n-k) = b^n p(n), \]

restricted version where \(p(n) \) is a polynomial of degree \(d \).

- Solution involves forming the implied homogeneous recurrence:

\[(a_0 x^k + a_1 x^{k-1} + \ldots a_k)(x - b)^{d+1} = 0 \]

- General solution is \(t(n) = \sum_i \sum_{j=0}^{m_i-1} c_{ij} n^j r_i^n \) then substitute into the original recurrence and initial condition.
Linear recurrences: general inhomogeneity

- More general inhomogeneity

\[a_0t(n) + a_1t(n-1) + \ldots + a_kt(n-k) = b_1^n p_1(n) + b_2^n p_2(n) + \ldots, \]

restricted version where \(p_i(n) \) is a polynomial of degree \(d_i \).

- Solution involves forming the implied homogeneous recurrence:

\[
(a_0 x^k + a_1 x^{k-1} + \ldots a_k)(x - b_1)^{d_1+1}(x - b_2)^{d_2+1} \ldots = 0
\]

- General solution is \(t(n) = \sum_i \sum_{j=0}^{m_i-1} c_{ij} n_j^i \) then substitute into the original recurrence and initial condition
Merge sort

- !!

- void merge_sort(data* inlist, data* outlist, unsigned n) {
 data* temp = new data[n];
 unsigned half = n/2;
 merge_sort(inlist, temp, half);
 merge_sort(inlist+half, temp+half, n-half);
 merge_lists(temp, half, temp+half, n-half, outlist);
}

- Recurrence relation?

- What if we split into d parts?

- Is it going to improve the performance?
Master theorem

- Divide and conquer tool
- \(T(n) = aT(n/b) + f(n) \)
- \(a \geq 1 \) and \(b > 1 \) are constants, \(f(n) \) is eventually positive, can have \(\lceil n/b \rceil \) or \(\lfloor n/b \rfloor \)
- Three cases ():
 1. \(f(n) = O(n^{\log_b a - \epsilon}) \) for some \(\epsilon > 0 \) then \(T(n) = \Theta(n^{\log_b a}) \);
 2. \(f(n) = \Theta(n^{\log_b a}) \) then \(T(n) = \Theta(n^{\log_b a \log n}) \);
 3. \(f(n) = \Omega(n^{\log_b a + \epsilon}) \) some \(\epsilon > 0 \) and \(af(n/b) \leq cf(n) \) for some constant \(c < 1 \) and sufficiently large \(n \) then \(T(n) = \Theta(f(n)) \).
Master theorem: examples

- $T(n) = 9T(n/3) + n$
- $a = 9$, $b = 3$, $\log_b a = \log_3 9 = 2$
- $f(n) = O(n^{2-\epsilon})$ holds
- Then $T(n) = \Theta(n^2)$
Master theorem: merge sort

- \(T(n) = dT(n/d) + n \)
- \(a = d, \ b = d, \ \log_b a = \log_d d = 1 \)
- \(f(n) = \Theta(n) \) holds
- Then \(T(n) = \Theta(n \log n) \)
Master theorem: misc

- if instead of $T(n) = \ldots$ we have $T(n) \leq \ldots$ then we can only make $O(\ldots)$ claims

- Third case condition: $af(n/b) \leq cf(n) - f(N)$ should grow steadily, e.g. $f(n) = n^2(1 + n^2\sin^2(n))$ will not work.

- There are gaps in the theorem like in case 1 $f(n) = O(n^{\log_b a})$ is not enough to conclude anything...

- Proof is optional
Master theorem: more examples

- $T(n) = T(2n/3) + 1$: case 2, $T(n) = \Theta(\log n)$
- $T(n) = 3T(n/4) + n \log n$: case 3, $T(n) = \Theta(n \log n)$
- $T(n) = 2T(n/2) + n \log n$: case 3 does not apply!!!
Change of variable

- Often helps
- \(T(n) = 2T(\lfloor \sqrt{n} \rfloor) + \log n \)
- \(n = 2^m \)
- \(S(m) = T(2^m) \) so that \(S(m) = 2S(m/2) + m \)
- now go back to \(n \) to obtain \(T(n) = \log n \log \log n \)
Change of range

- $T(1) = 1/3, T(n) = nT^2(n/2)$
- $n = 2^m$ leads to $S(m) = 2^mS^2(m - 1)$
- change of range: $U(m) = \log S(m)$