EECS 477: Introduction to algorithms. Lecture 8

Prof. Igor Guskov
guskov@eecs.umich.edu

October 1, 2002

Lecture outline

- Recurrencies: inhomogeneous case
- Master theorem
- Examples

Recursive Fibonacci

- Integer fib_rec(unsigned n) \{
if($n<2$)
return 1;
else
return fib_rec(n-1) + fib_rec(n-2);
\}
- $t(n)=c_{1} n+t(n-1)+t(n-2)$: a linear recurrence
- $t(0)=t(1)=c_{0}$

Linear recurrencies

- General form: $a_{0} t(n)+a_{1} t(n-1)+\ldots+a_{k} t(n-k)=f(n)$ plus initial conditions on $t(0), \ldots, t(k-1)$
- a_{k} are constants
- Start with homogeneous case: $f(n)=0$: solutions form linear space (can add and scale them)

Linear recurrencies: characteristic polynomial

- Consider solution of exponential kind $t(n)=x^{n}$, substitute into equation to get

$$
a_{0} x^{n}+a_{1} x^{n-1}+\ldots a_{k} x^{n-k}=0
$$

or

$$
a_{0} x^{k}+a_{1} x^{k-1}+\ldots a_{k}=0
$$

- Find roots of the above and assume they are different r_{1}, \ldots, r_{k}. Then

$$
t(n)=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}+\ldots+c_{k} r_{k}^{n}
$$

is a general solution form, constants from initial conditions

- for a root r of multiplicity m we get m fundamental solutions

$$
r^{n}, n r^{n}, \ldots, n^{m-1} r^{n}
$$

Linear recurrencies: inhomogeneity

- Inhomogeneous are important!

$$
a_{0} t(n)+a_{1} t(n-1)+\ldots+a_{k} t(n-k)=b^{n} p(n)
$$

restricted version where $p(n)$ is a polynomial of degree d.

- Solution involves forming the implied homogeneous recurrence:

$$
\left(a_{0} x^{k}+a_{1} x^{k-1}+\ldots a_{k}\right)(x-b)^{d+1}=0
$$

- General solution is $t(n)=\sum_{i} \sum_{j=0}^{m_{i}-1} c_{i j} n^{j} r_{i}^{n}$ then substitute into the original recurrence and initial condition

Linear recurrencies: general inhomogeneity

- More general inhomogeneity

$$
a_{0} t(n)+a_{1} t(n-1)+\ldots+a_{k} t(n-k)=b_{1}^{n} p_{1}(n)+b_{2}^{n} p_{2}(n)+\ldots
$$ restricted version where $p_{i}(n)$ is a polynomial of degree d_{i}.

- Solution involves forming the implied homogeneous recurrence:

$$
\left(a_{0} x^{k}+a_{1} x^{k-1}+\ldots a_{k}\right)\left(x-b_{1}\right)^{d_{1}+1}\left(x-b_{2}\right)^{d_{2}+1} \ldots=0
$$

- General solution is $t(n)=\sum_{i} \sum_{j=0}^{m_{i}-1} c_{i j} n^{j} r_{i}^{n}$ then substitute into the original recurrence and initial condition

Merge sort

- !!
- void merge_sort(data* inlist, data* outlist, unsigned n) \{ data* temp $=$ new data[n];
unsigned half $=\mathrm{n} / 2$;
merge_sort(inlist, temp, half);
merge_sort(inlist+half, temp+half, n-half);
merge_lists (temp, half, temp+half, n-half, outlist);
\}
- Recurrence relation?
- What if we split into d parts?
- Is it going to improve the performance?

Master theorem

- Divide and conquer tool
- $T(n)=a T(n / b)+f(n)$
- $a \geq 1$ and $b>1$ are constants, $f(n)$ is eventually positive, can have $\lceil n / b\rceil$ or $\lfloor n / b\rfloor$
- Three cases ():

$$
\begin{aligned}
& f(n)=O\left(n^{\log _{b} a-\epsilon}\right) \text { for some } \epsilon>0 \text { then } T(n)=\Theta\left(n^{\log _{b} a}\right) ; \\
& f(n)=\Theta\left(n^{\log _{b} a}\right) \text { then } T(n)=\Theta\left(n^{\log _{b} a} \operatorname{logn}\right) ; \\
& f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right) \text { some } \epsilon>0 \text { and } a f(n / b) \leq c f(n) \text { for some }
\end{aligned}
$$ constant $c<1$ and sufficiently large n then $T(n)=\Theta(f(n))$.

Master theorem: examples

- $T(n)=9 T(n / 3)+n$
- $a=9, b=3, \log _{b} a=\log _{3} 9=2$
- $f(n)=O\left(n^{2-\epsilon}\right)$ holds
- Then $T(n)=\Theta\left(n^{2}\right)$

Master theorem: merge sort

- $T(n)=d T(n / d)+n$
- $a=d, b=d, \log _{b} a=\log _{d} d=1$
- $f(n)=\Theta(n)$ holds
- Then $T(n)=\Theta(n \log n)$

Master theorem: misc

- if instead of $T(n)=\ldots$ we have $T(n) \leq \ldots$ then we can only make $O(\ldots)$ claims
- Third case condition: $a f(n / b) \leq c f(n)-f(N)$ should grow steadily, e.g. $f(n)=n^{2}\left(1+n^{2} \sin ^{2}(n)\right)$ will not work.
- There are gaps in the theorem like in case $1 f(n)=O\left(n^{\log _{b} a}\right)$ is not enough to conclude anything...
- Proof is optional

Master theorem: more examples

- $T(n)=T(2 n / 3)+1$: case $2, T(n)=\Theta(\log n)$
- $T(n)=3 T(n / 4)+n \log n:$ case $3, T(n)=\Theta(n \log n)$
- $T(n)=2 T(n / 2)+n \log n$: case 3 does not apply!!!

Change of variable

- Often helps
- $T(n)=2 T(\lfloor\sqrt{n}\rfloor)+\log n$
- $n=2^{m}$
- $S(m)=T\left(2^{m}\right)$ so that $S(m)=2 S(m / 2)+m$
- now go back to n to obtain $T(n)=\log n \log \log n$

Change of range

- $T(1)=1 / 3, T(n)=n T^{2}(n / 2)$
- $n=2^{m}$ leads to $S(m)=2^{m} S^{2}(m-1)$
- change of range: $U(m)=\log S(m)$

