
EECS 477: Introduction to algorithms.

Lecture 9

Prof. Igor Guskov

guskov@eecs.umich.edu

October 3, 2002

1

Lecture outline: data structures (chapter 5)

• Arrays, STL vectors

• Graphs

• Trees, balanced trees

• Heaps, binomial heaps

• Associative tables, hashing

• Disjoint subsets (union-find)

• Sets: red-black trees vs. sorted arrays

2

Arrays

• float x[n]: fixed number of elements

• access via indices, constant time address calculation, read/write

O(1) – elementary operation

• insertion, maximum value, initialization Θ(n)

• virtual initialization allows initialize while using the array

3

Arrays: virtual initialization

• requires two auxiliary arrays and a counter

• IDataT& operator[](unsigned i) {

if(!is_initialized(i))

init(i);

return m_px[i];

}

IDataT* m_px;

unsigned *m_pa, *m_pb;

unsigned m_ctr;

4

Arrays: virtual initialization

• m_pa stores initialized indices in order

• m_pb stores order index at the location

• bool is_initialized(unsigned i) const {

if(m_pb[i]<m_ctr) {

if(m_pa[m_pb[i]]!=i) return false;

else return true;

} else return false;

}

void init(unsigned i) {

m_pb[i] = m_ctr;

m_pa[m_ctr] = i;

++m_ctr;

}

5

Arrays: lists

• Records with pointers

• singly linked, double linked, circular

• insertion, removal, successor O(1)

• search, min, max O(n)

6

Graphs

• G = (V, E)

• V - set of vertices, E - set of edges

• Ex: ({1,2,3,4} , {(1,2), (3,4), (2,3)})

• Directed and undirected

• Connected, directed graphs may be strongly connected

• Paths, cycles

• Undirected acyclic graphs: forests (each connected compo-

nent is a tree)

• Adjacency matrix or list of neighbors representation

7

Trees

• Rooted trees have a special root node

• Draw with root at the top, children going downwards like a

family tree

• Nodes: parents, children, siblings, ancestors, descendants (re-

flexive!)

• Leaf has no children, others are internal

• Binary trees have no more than two children (k-ary trees)

• Search trees (binary: left children less or equal, right children

greater of equal)

8

Trees

• Nodes have height, depth, and level

• height(v) = if leaf(v) then 0 else max(height(children(v)))+1

• depth(v) = if root(v) then 0 else depth(parent(v))+1

• level(v) = height(root(v)) - depth(v)

• trees have height:

height(tree) = height(root(v))

• Balanced trees have height = O(logn) where n is number of

nodes, then the search is efficient (red-black trees, 2-3 trees,

splay trees)

9

Trees

• Balanced trees are needed for logarithmic search operations

• Red-black and 2-3 trees store additional information

• Rotation: tool for balancing

• Splay trees do not store any additional information – they are

self-adjusting

• Will not cover them now, may have a homework problem on

that

10

Projects

• First draft and teams – next week Friday night October 11th

• Final version submit by October 29th

• Approval deadline is October 31st

• Default project will be assigned to everybody else

• Project due December 9th

11

Projects: list

• Rectangle/box packing

• Power graph coloring

• Covering with disks or boxes

• Clustering

• Scheduling: job interval selection

• Pushing blocks puzzles

• Traveling salesman? Cliques in the graph?

12

Associative tables

• Keys do not form continuous range like integers, rather sparse
like strings

• Symbol table in compilers

• Hash function h : Keys → {0,1, . . . , N − 1}

• When x 6= y but h(x) = h(y) we have a collision: resolve it
by list chaining

• m - the number of keys, N - allocated array size, then m/N
is the load factor

• When load factor is below one, access is efficient, otherwise
we can rehash doubling the range

• Rehashing helps to maintain constant amortized expected
time

13

Heaps

• Do not confuse with Binary Search Trees!!!

• Rooted tree – no pointers: i is the parent of 2i+1 and 2i+2

• Picture: essentially complete binary tree – every internal node
has two children except for a special one which may only have
the left one

• Heap property: value(i) ≤ value(parent(i)) for all non-root
nodes i

• alter heap: new value higher – percolate, lower – sift down

• make heap: starting from the last sift down – linear time
algorithm

• heap sort: O(n logn) algorithm

14

Heaps: alter heap

• O(logn) operations, preserve heap property

• void sift_down(data* p, int i, unsigned N) {

while (i is internal AND key(i)<key(child(i))) {

exchange i with the larger child of i

}

}

void percolate(data* p, int i, unsigned N) {

while (i is not root AND key(i)>key(parent(i))) {

exchange i with its parent

}

}

15

Heaps: operations

• void find_max(data* p, int i, unsigned N) {

return p[0];

}

• void pop_max(data* p, unsigned N) {

p[0] = p[N-1];

--N;

sift_down(p, 0);

}

• void insert(data* p, data d, unsigned N) {

++N;

p[N] = d;

percolate(p, N);

}

16

Make-heap: linear algorithm

• void make_heap(data* p, unsigned N) {

for(unsigned k = N/2; k>=0; --k)

sift_down(p, k, N);

}

• on level s we have 2K−s nodes each takes s to sift down

•
∑K

s=1 s2K−s = O(2K), N = 2K

• Heap property built from leafs to root

17

Heap sort

• void heap_sort(data* p, unsigned N) {

make_heap(p, N);

for(unsigned k = N-1; k>=0; --k) {

swap p[0] and p[N-1];

sift_down(p, 0, k);

}

}

• t(N) = O(N logN)

18

Next time

• binomial heaps and disjoint subsets

19

