EECS 477: Introduction to algorithms.
Lecture 9

Prof. Igor Guskov
guskov@eecs.umich.edu

October 3, 2002
Lecture outline: data structures (chapter 5)

- Arrays, STL vectors
- Graphs
- Trees, balanced trees
- Heaps, binomial heaps
- Associative tables, hashing
- Disjoint subsets (union-find)
- Sets: red-black trees vs. sorted arrays
Arrays

- float $x[n]$: fixed number of elements
- access via indices, constant time address calculation, read/write $O(1)$ – elementary operation
- insertion, maximum value, initialization $\Theta(n)$
- virtual initialization allows initialize while using the array
Arrays: virtual initialization

- requires two auxiliary arrays and a counter

- `IDataT& operator[](unsigned i) {
 if(!is_initialized(i))
 init(i);
 return m_px[i];
}

IDataT* m_px;
unsigned *m_pa, *m_pb;
unsigned m_ctr;
Arrays: virtual initialization

- `m_pa` stores initialized indices in order
- `m_pb` stores order index at the location
- ```
bool is_initialized(unsigned i) const {
 if(m_pb[i]<m_ctr) {
 if(m_pa[m_pb[i]]!=i) return false;
 else return true;
 } else return false;
}
```
- ```
void init(unsigned i) {
    m_pb[i] = m_ctr;
    m_pa[m_ctr] = i;
    ++m_ctr;
}
```
Arrays: lists

- Records with pointers
- singly linked, double linked, circular
- insertion, removal, successor $O(1)$
- search, min, max $O(n)$
Graphs

- $G = (V, E)$
- V - set of vertices, E - set of edges
- Ex: $\{1, 2, 3, 4\}, \{(1, 2), (3, 4), (2, 3)\}$
- Directed and undirected
- Connected, directed graphs may be strongly connected
- Paths, cycles
- Undirected acyclic graphs: forests (each connected component is a tree)
- Adjacency matrix or list of neighbors representation
Trees

• Rooted trees have a special root node
• Draw with root at the top, children going downwards like a family tree
• Nodes: parents, children, siblings, ancestors, descendants (reflexive!)
• Leaf has no children, others are internal
• Binary trees have no more than two children (k-ary trees)
• Search trees (binary: left children less or equal, right children greater of equal)
Trees

- Nodes have height, depth, and level
 - \(\text{height}(v) = \) if leaf\((v)\) then 0 else max\(\text{height}(\text{children}(v))\)+1
 - \(\text{depth}(v) = \) if root\((v)\) then 0 else depth\(\text{parent}(v)\)+1
 - \(\text{level}(v) = \text{height}(\text{root}(v)) - \text{depth}(v) \)

- Trees have height:
 \(\text{height}(\text{tree}) = \text{height}(\text{root}(v)) \)

- Balanced trees have height \(= O(\log n) \) where \(n \) is number of nodes, then the search is efficient (red-black trees, 2-3 trees, splay trees)
Trees

- Balanced trees are needed for logarithmic search operations
- Red-black and 2-3 trees store additional information
- Rotation: tool for balancing
- Splay trees do not store any additional information – they are self-adjusting
- Will not cover them now, may have a homework problem on that
Projects

• First draft and teams – next week Friday night October 11th
• Final version submit by October 29th
• Approval deadline is October 31st
• Default project will be assigned to everybody else
• Project due December 9th
Projects: list

- Rectangle/box packing
- Power graph coloring
- Covering with disks or boxes
- Clustering
- Scheduling: job interval selection
- Pushing blocks puzzles
- Traveling salesman? Cliques in the graph?
Associative tables

- Keys do not form continuous range like integers, rather sparse like strings
- Symbol table in compilers
- Hash function $h : \text{Keys} \rightarrow \{0, 1, \ldots, N - 1\}$
- When $x \neq y$ but $h(x) = h(y)$ we have a collision: resolve it by list chaining
- m - the number of keys, N - allocated array size, then m/N is the load factor
- When load factor is below one, access is efficient, otherwise we can rehash doubling the range
- Rehashing helps to maintain constant amortized expected time
Heaps

- Do not confuse with Binary Search Trees!!!
- Rooted tree – no pointers: i is the parent of $2i + 1$ and $2i + 2$
- Picture: essentially complete binary tree – every internal node has two children except for a special one which may only have the left one
- Heap property: $value(i) \leq value(parent(i))$ for all non-root nodes i
- alter heap: new value higher – percolate, lower – sift down
- make heap: starting from the last sift down – linear time algorithm
- heap sort: $O(n \log n)$ algorithm
Heaps: alter heap

- $O(\log n)$ operations, preserve heap property

- void sift_down(data* p, int i, unsigned N) {
 while (i is internal AND key(i)<key(child(i))) {
 exchange i with the larger child of i
 }
}

- void percolate(data* p, int i, unsigned N) {
 while (i is not root AND key(i)>key(parent(i))) {
 exchange i with its parent
 }
}
Heaps: operations

- void find_max(data* p, int i, unsigned N) {
 return p[0];
}

- void pop_max(data* p, unsigned N) {
 p[0] = p[N-1];
 --N;
 sift_down(p, 0);
}

- void insert(data* p, data d, unsigned N) {
 ++N;
 p[N] = d;
 percolate(p, N);
}
Make-heap: linear algorithm

- void make_heap(data* p, unsigned N) {
 for(unsigned k = N/2; k>=0; --k)
 sift_down(p, k, N);
}

- on level s we have 2^{K-s} nodes each takes s to sift down
- $\sum_{s=1}^{K} s2^{K-s} = O(2^K)$, $N = 2^K$
- Heap property built from leafs to root
Heap sort

• void heap_sort(data* p, unsigned N) {
 make_heap(p, N);
 for(unsigned k = N-1; k>=0; --k) {
 swap p[0] and p[N-1];
 sift_down(p, 0, k);
 }
}

• $t(N) = O(N \log N)$
Next time

- binomial heaps and disjoint subsets