EECS 477: Introduction to algorithms. Lecture 9

Prof. Igor Guskov
guskov@eecs.umich.edu

October 3, 2002

Lecture outline: data structures (chapter 5)

- Arrays, STL vectors
- Graphs
- Trees, balanced trees
- Heaps, binomial heaps
- Associative tables, hashing
- Disjoint subsets (union-find)
- Sets: red-black trees vs. sorted arrays

Arrays

- float $x[n]$: fixed number of elements
- access via indices, constant time address calculation, read/write $O(1)$ - elementary operation
- insertion, maximum value, initialization $\Theta(n)$
- virtual initialization allows initialize while using the array

Arrays: virtual initialization

- requires two auxiliary arrays and a counter
- IDataT\& operator[](unsigned i) \{
if(!is_initialized(i))
init(i);
return m_px[i];
\}

IDataT* m_px;
unsigned *m_pa, *m_pb;
unsigned m_ctr;

Arrays: virtual initialization

- m_pa stores initialized indices in order
- m_pb stores order index at the location
- bool is_initialized(unsigned i) const \{
if(m_pb[i]<m_ctr) \{
if (m_pa[m_pb[i]]!=i) return false;
else return true;
\} else return false;
\}
void init(unsigned i) \{
$\mathrm{m}_{\mathrm{p}} \mathrm{pb}[\mathrm{i}]=\mathrm{m}_{-} \mathrm{ctr}$;
$m_{-} p a\left[m_{-} c t r\right]=i ;$
++m_ctr;
\}

Arrays: lists

- Records with pointers
- singly linked, double linked, circular
- insertion, removal, successor $O(1)$
- search, min, $\max O(n)$

Graphs

- $G=(V, E)$
- V - set of vertices, E - set of edges
- Ex: $(\{1,2,3,4\},\{(1,2),(3,4),(2,3)\})$
- Directed and undirected
- Connected, directed graphs may be strongly connected
- Paths, cycles
- Undirected acyclic graphs: forests (each connected component is a tree)
- Adjacency matrix or list of neighbors representation

Trees

- Rooted trees have a special root node
- Draw with root at the top, children going downwards like a family tree
- Nodes: parents, children, siblings, ancestors, descendants (reflexive!)
- Leaf has no children, others are internal
- Binary trees have no more than two children (k-ary trees)
- Search trees (binary: left children less or equal, right children greater of equal)

Trees

- Nodes have height, depth, and level
- height(v) $=$ if leaf(v) then 0 else max (height(children(v)))+1
- depth(v) $=$ if $\operatorname{root}(v)$ then 0 else depth(parent(v))+1
- level(v) = height(root(v)) - depth(v)
- trees have height:
height (tree) $=$ height (root(v))
- Balanced trees have height $=O(\log n)$ where n is number of nodes, then the search is efficient (red-black trees, 2-3 trees, splay trees)

Trees

- Balanced trees are needed for logarithmic search operations
- Red-black and 2-3 trees store additional information
- Rotation: tool for balancing
- Splay trees do not store any additional information - they are self-adjusting
- Will not cover them now, may have a homework problem on that

Projects

- First draft and teams - next week Friday night October 11th
- Final version submit by October 29th
- Approval deadline is October 31st
- Default project will be assigned to everybody else
- Project due December 9th

Projects: list

- Rectangle/box packing
- Power graph coloring
- Covering with disks or boxes
- Clustering
- Scheduling: job interval selection
- Pushing blocks puzzles
- Traveling salesman? Cliques in the graph?

Associative tables

- Keys do not form continuous range like integers, rather sparse like strings
- Symbol table in compilers
- Hash function $h:$ Keys $\rightarrow\{0,1, \ldots, N-1\}$
- When $x \neq y$ but $h(x)=h(y)$ we have a collision: resolve it by list chaining
- m - the number of keys, N - allocated array size, then m / N is the load factor
- When load factor is below one, access is efficient, otherwise we can rehash doubling the range
- Rehashing helps to maintain constant amortized expected time

Heaps

- Do not confuse with Binary Search Trees!!!
- Rooted tree - no pointers: i is the parent of $2 i+1$ and $2 i+2$
- Picture: essentially complete binary tree - every internal node has two children except for a special one which may only have the left one
- Heap property: value(i) $\leq \operatorname{value}($ parent $(i))$ for all non-root nodes i
- alter heap: new value higher - percolate, lower - sift down
- make heap: starting from the last sift down - linear time algorithm
- heap sort: $O(n \log n)$ algorithm

Heaps: alter heap

- $O(\log n)$ operations, preserve heap property
- void sift_down(data* p, int i, unsigned N) \{ while (i is internal AND key(i)<key(child(i))) \{ exchange i with the larger child of i \}
\}
void percolate(data* p, int i, unsigned N) \{ while (i is not root AND key(i)>key(parent(i))) \{ exchange i with its parent \}
\}

Heaps: operations

- void find_max(data* p, int i, unsigned N) \{ return $\mathrm{p}[0]$;
\}
- void pop_max (data* p, unsigned N) \{

$$
\mathrm{p}[0]=\mathrm{p}[\mathrm{~N}-1] ;
$$

$$
--N ;
$$

sift_down(p, 0);
\}

- void insert(data* p, data d, unsigned N) \{ ++N ;
$\mathrm{p}[\mathrm{N}]=\mathrm{d}$; percolate(p, N);
\}

Make-heap: linear algorithm

- void make_heap(data* p, unsigned N) \{

$$
\begin{aligned}
& \text { for (unsigned } k=N / 2 ; k>=0 ;--k) \\
& \quad \operatorname{sift} \text { _down }(p, k, N) ;
\end{aligned}
$$

$$
\}
$$

- on level s we have 2^{K-s} nodes each takes s to sift down
- $\sum_{s=1}^{K} s 2^{K-s}=O\left(2^{K}\right), N=2^{K}$
- Heap property built from leafs to root

Heap sort

- void heap_sort(data* p, unsigned N) \{
make_heap(p, N);
for (unsigned $k=N-1 ; k>=0 ;-k$) \{
swap $p[0]$ and $p[\mathrm{~N}-1]$;
sift_down(p, 0, k);
\}
\}
- $t(N)=O(N \log N)$

Next time

- binomial heaps and disjoint subsets

