EECS 477: Introduction to algorithms. Lecture 10

Prof. Igor Guskov
guskov@eecs.umich.edu

October 8, 2002

Lecture outline: data structures (chapter 5)

- Heaps, binomial heaps
- Disjoint subsets (union-find)

Heaps

- Do not confuse with Binary Search Trees!!!
- Rooted tree - no pointers: i is the parent of $2 i+1$ and $2 i+2$
- Picture: essentially complete binary tree - every internal node has two children except for a special one which may only have the left one
- Heap property: value(i) $\leq \operatorname{value}($ parent $(i))$ for all non-root nodes i
- alter heap: new value higher - percolate, lower - sift down
- make heap: starting from the last sift down - linear time algorithm
- heap sort: $O(n \log n)$ algorithm

Heaps: alter heap

- $O(\log n)$ operations, preserve heap property
- void sift_down(data* p, int i, unsigned N) \{ while (i is internal AND key(i)<key(child(i))) \{ exchange i with the larger child of i \}
\}
void percolate(data* p, int i, unsigned N) \{ while (i is not root AND key(i)>key(parent(i))) \{ exchange i with its parent \}
\}

Heaps: operations

- void find_max(data* p, int i, unsigned N) \{ return $\mathrm{p}[0]$;
\}
- void pop_max (data* p, unsigned N) \{

$$
\mathrm{p}[0]=\mathrm{p}[\mathrm{~N}-1] ;
$$

$$
--N ;
$$

sift_down(p, 0);
\}

- void insert(data* p, data d, unsigned N) \{ ++N ;
$\mathrm{p}[\mathrm{N}]=\mathrm{d}$; percolate(p, N);
\}

Make-heap: linear algorithm

- void make_heap(data* p, unsigned N) \{

```
    for(unsigned k = N/2; k>=0; --k)
    sift_down(p, k, N);
```

\}

- on level s we have 2^{K-s} nodes each takes s to sift down
- $\sum_{s=1}^{K} s 2^{K-s}=O\left(2^{K}\right), N=2^{K}$
- Heap property built from leafs to root

Heap sort

- void heap_sort(data* p, unsigned N) \{
make_heap(p, N);
for (unsigned $k=N-1 ; k>=0 ;-k$) \{
swap $p[0]$ and $p[\mathrm{~N}-1]$;
sift_down(p, 0, k);
\}
\}
- $t(N)=O(N \log N)$

Heap misc

- Sometimes useful to store order of elements in the heap explicitly: define as the inverse function to the heap array.
- This does not change overall asymptotic performance
- To figure out who to percolate and sift-down
- Do not need it if only priority queue without updates is needed.
- k-ary heaps make the tree shallower.

Heaps

Procedure	Binary (wc)	Binomial (wc)	Fibonacci (am)
make-heap	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
insert	$\Theta(\log n)$	$O(\log n)$	$\Theta(1)$
find-max	$\Theta(1)$	$O(\log n)$	$\Theta(1)$
delete-max	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)$
merge	$\Theta(n)$	$O(\log n)$	$\Theta(1)$
increase-key	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(1)$
delete	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)$

Disjoint sets: union-find

- N objects, set $\{0,1, \ldots, N-1\}$
- Partition into disjoint sets - each element in exactly one set
- Each set has a label - one of its members, e.g. the smallest one: $\{2,3,7,9\}$ is "set 2 "
- Two operations:

FIND: given an object find which set contains it and return its label

MERGE(UNION): given two different labels merge the corresponding two subsets

- hence the name: Union-Find data structure

Simple representation

- Array set[N] stores element labels
- $\Theta(1)$ find: int find_simple(int x) \{ return set[x]; \}
- $\Theta(N)$ merge:

```
void merge_simple(int a, int b) {
for(k=0; k<N; ++k)
    if(set[k]==max(a,b))
        set[k] = min(a,b);
}
```


Amortized setting

- We would like to perform n finds, and $N-1$ merges not clear in which order, then the simple algorithms give $\Theta(n)$ for all finds, and $\Theta\left(N^{2}\right)$ for all merges
- Rooted tree rep: Array set [N] will store forest of rooted trees, where set[i]==i would indicate a root node, and otherwise set $[k]$ gives the index of the parent of k.
- Find will follow the parent links to the label node.
- Merge will need to merge two trees.

Rooted tree rep functions

- Θ (height) find

```
int find_rooted(int x) {
    while(set[x]!=x)
        x = set[x];
    return x;
}
```

- Θ (1) merge

```
void merge_rooted(int a, int b) {
    if(a<b)
        set[b] = a;
    else
        set[a] = b;
}
```


Tree height control

- The above procedure may grow tree height: consider the following sequence on $\{0, \ldots, 7\}$ do $m(6,7), m(5,6), \ldots, m(0,1)$
- introduce another array height[n]
- void merge_rank(int a, int b) \{ if (height(a)==height [b]) \{ height (a) = height (b); set[b] = a;
\} else \{
if (height (a)<height[b]) set[a] = b;
else set[b] = a;
\}
\}

Tree height control

- Theorem: The above merge procedure ensures that after an arbitrary sequence of merges starting from initial situation we have that height [a] is at most $\lfloor\log k\rfloor$ where k is the number of nodes in tree (a).
- Basis: initially, zero height everywhere
- Induction: assume for m satisfying $1 \leq m<k$. Merge two smaller trees. Let $a \leq b$ and $k=a+b$. Then $a \leq k / 2$ and $b \leq k-1$.
- $h_{a} \neq h_{b}$: then $h_{k} \leq \max (\lfloor\log a\rfloor,\lfloor\log b\rfloor)$.
- $h_{a}=h_{b}$: then $h_{k}=h_{a}+1 \leq\lfloor a\rfloor+1$. But $\lfloor a\rfloor \leq\lfloor\log (k / 2)\rfloor \leq$ $\lfloor\log k-1\rfloor=\lfloor\log k\rfloor-1$.

Path compression

- When doing find relink all the pointers to the root of the tree: reducing its height
- int find_compress(int x) \{

$$
\text { int } r=x
$$

$$
\text { while(set }[r]!=r \text {) }
$$

$$
r=\operatorname{set}[r]
$$

$$
\text { while(} x!=r)\{
$$

$$
\text { int } j=\operatorname{set}[x] ;
$$

$$
\operatorname{set}[x]=r
$$

$$
x=j
$$

\}
\}

Disjoint set structure

- merge_rank and find_compress form the basis for union-find structure
- rank is the upper bound on the height of the tree - because of path compression
- Ackermann's function variant

$$
A(i, j)= \begin{cases}2 j, & \text { if } i=0 \\ 2, & \text { if } j=1 \\ A(i-1, A(i, j-1)), & \text { otherwise }\end{cases}
$$

Disjoint set structure

- $A(1, j)=2^{j}, A(2, j)$ is j powers of 2 stacked $A(2,4)=$ 65,536 , grows extremely fast
- $\alpha(i, j)=\min \{k \mid k \geq 1$ and $A(k, 4\lceil i / j\rceil>\log j\}$.
- for all practical purposes $\alpha(i, j) \leq 3$
- Tarjan showed that a sequence of n finds and m merges can be executed in a time in $\Theta((m+n) \alpha(m+n, N))$ where N is the size of the set.

Dijkstra algorīthm

- Given a directed graph $G=(N, A), N$ - nodes, A - directed edges (arrows)
- Each edge has non-negative length $L: A \rightarrow \mathbf{R}^{+}$
- One node is source node
- Find the length of the shortest path from the source to each of the nodes
- Analysis: book and homework

Dijkstra algorithm

```
void Dijkstra(LengthFn& L) {
    vector<float> D(n); // n nodes
    set<int> C = {1,2, ..., n-1};
    for(i=1; i<n; ++i)
    D[i] = L(1,i)
    for(i=0; i<n-2; ++i) {
    v = find_min( heap on D );
    C.remove(v);
    for_all( w from C )
        D[w] = min( D [w], D[v+L(v,w)] );
    }
}
```

