EECS 477: Introduction to algorithms.
Lecture 10

Prof. Igor Guskov
guskov@eecs.umich.edu

October 8, 2002

Lecture outline: data structures (chapter 5)

e Heaps, binomial heaps

e Disjoint subsets (union-find)

Heaps

e Do not confuse with Binary Search Trees!!!
e Rooted tree — no pointers: ¢ is the parent of 22+ 1 and 2:+4+2

e Picture: essentially complete binary tree — every internal node
has two children except for a special one which may only have
the left one

e Heap property: wvalue(i) < wvalue(parent(i)) for all non-root
nodes 4

e alter heap: new value higher — percolate, lower — sift down

e Mmake heap: starting from the last sift down — linear time
algorithm

e heap sort: O(nlogn) algorithm

Heaps: alter heap

e O(logn) operations, preserve heap property

e void sift_down(data* p, int i, unsigned N) {
while (i is internal AND key(i)<key(child(i))) {
exchange i with the larger child of 1i

void percolate(data* p, int i, unsigned N) {
while (i is not root AND key(i)>key(parent(i))) {

exchange i with its parent

Heaps: operations

e void find_max(data* p, int i, unsigned N) {
return pl[O0];

}
e void pop_max(data* p, unsigned N) {
plO] = p[N-1];
__N;
sift_down(p, 0);
}
e void insert(data* p, data d, unsigned N) {
++N;
plN] = d;

percolate(p, N);

Make-heap: linear algorithm

e void make_heap(data* p, unsigned N) {
for(unsigned k = N/2; k>=0; --k)
sift_down(p, k, N);
+

e on level s we have 2%—5 nodes each takes s to sift down
o I s2Kk=s=02K), N=2K

e Heap property built from leafs to root

Heap sort

e void heap_sort(data* p, unsigned N) {
make_heap(p, N);
for(unsigned k = N-1; k>=0; --k) {
swap p[0] and p[N-1];
sift_down(p, 0, k);

}
e t(N)=0O(NIogN)

Heap misc

e Sometimes useful to store order of elements in the heap ex-
plicitly: define as the inverse function to the heap array.

e T his does not change overall asymptotic performance
e [0 figure out who to percolate and sift-down
e DO not need it if only priority queue without updates is needed.

e k-ary heaps make the tree shallower.

Heaps

Procedure Binary (wc) Binomial (wc) Fibonacci (am)

make-heap o(1) o(1) o(1)
insert ©(logn) O(logn) o(1)
find-max ©(1) O(logn) o(1)
delete-max ©(logn) ©(logn) O(logn)
merge O(n) O(logn) (1)
increase-key ©(logn) o (logn) ©(1)
delete ©(logn) ©(logn) O(logn)

Disjoint sets: union-find

e N objects, set {0,1,...,N —1}
e Partition into disjoint sets — each element in exactly one set

e Each set has a label — one of its members, e.g. the smallest
one: {2,3,7,9} is “set 2"

e [WO operations:

FIND: given an object find which set contains it and return
its label

MERGE(UNION): given two different labels merge the cor-
responding two subsets

e hence the name: Union-Find data structure

10

Simple representation

e Array set[N] stores element labels

e O(1) find:

int find_simple(int x) { return setl[x]; }
e O(N) merge:

void merge_simple(int a, int b) {
for(k=0; k<N; ++k)
if (set [k]==max(a,b))
set[k] = min(a,b);

11

Amortized setting

e \We would like to perform n finds, and N — 1 merges not clear

in which order, then the simple algorithms give ©(n) for all
finds, and ©(N?) for all merges

e Rooted tree rep: Array set[N] will store forest of rooted trees,
where set[i]l==i would indicate a root node, and otherwise
set[k] gives the index of the parent of k.

e Find will follow the parent links to the label node.

e Merge will need to merge two trees.

12

Rooted tree rep functions

e ©(height) find

int find_rooted(int x) {
while(set [x] !'=x)
x = setl[x];
return Xx;

}
e ©(1) merge

void merge_rooted(int a, int b) {

if (a<b)

set[b] = a;
else

set[a] = b;

13

Tree height control

e [he above procedure may grow tree height:

following sequence on {0,...,7}
do m(6,7), m(5,6), ..., m(0,1)

e introduce another array height [N]

e void merge_rank(int a, int b) {
if (height (a)==height [b]) {
height(a) = height(b);
set[b] = a;
} else {
if (height (a)<height[b]) setla] = b;
else set[b] = a;

consider the

14

Tree height control

e [heorem: The above merge procedure ensures that after an
arbitrary sequence of merges starting from initial situation we
have that height[a] is at most |log k| where k is the number
of nodes in tree(a).

e Basis: initially, zero height everywhere

e Induction: assume for m satisfying 1 < m < k. Merge two
smaller trees. Let a < band Kk =a+b. Then a < k/2 and
b<k-—1.

e hq # hy: then h;, < max(|loga],|logb]).

e hg = hy: then hy = hg+1 < |a|+1. But |a] < |log(k/2)] <
[logk —1| = |logk]| — 1.

15

Path compression

e \When doing find relink all the pointers to the root of the
tree: reducing its height

e int find_compress(int x) {
int r = x;
while(set[r]!=r)
r = setl[r];
while(x!=r) {
int j = setl[x];
set[x] = r;

X =33

16

Disjoint set structure

e merge_rank and find_compress form the basis for union-find
structure

e rank is the upper bound on the height of the tree — because
of path compression

e Ackermann’s function variant

(25, if i =0
A, 7) = 12, if j=1
|A(i—1,A(i,5 — 1)), otherwise

17

Disjoint set structure

e A(1,5) = 27, A(2,7) is j powers of 2 stacked A(2,4) =
65,536, grows extremely fast

e a(i,7) = min{klk > 1 and A(k,4[i/j] >109j}.
e for all practical purposes a(i,j) < 3

e Tarjan showed that a sequence of n finds and m merges can
be executed in a time in ©((m + n)a(m + n, N)) where N is
the size of the set.

18

Dijkstra algorithim

e Given a directed graph G = (N, A), N - nodes, A - directed
edges (arrows)

e Each edge has non-negative length L : A — RT
e One node is source node

e Find the length of the shortest path from the source to each
of the nodes

e Analysis: book and homework

19

Dijkstra algorithm

void Dijkstra(LengthFn& L) A
vector<float> D(n); // n nodes
set<int> C = {1,2, ..., n-1};
for(i=1; i<n; ++i)

D[i] = L(1,1)
for(i=0; i<n-2; ++i) {
v = find_min(heap on D);
C.remove (V) ;
for_all(w from C)
D[w] = min(D[w], D[v+L(v,w)]

20

