
EECS 477: Introduction to algorithms.

Lecture 10

Prof. Igor Guskov

guskov@eecs.umich.edu

October 8, 2002

1

Lecture outline: data structures (chapter 5)

• Heaps, binomial heaps

• Disjoint subsets (union-find)

2

Heaps

• Do not confuse with Binary Search Trees!!!

• Rooted tree – no pointers: i is the parent of 2i+1 and 2i+2

• Picture: essentially complete binary tree – every internal node
has two children except for a special one which may only have
the left one

• Heap property: value(i) ≤ value(parent(i)) for all non-root
nodes i

• alter heap: new value higher – percolate, lower – sift down

• make heap: starting from the last sift down – linear time
algorithm

• heap sort: O(n logn) algorithm

3

Heaps: alter heap

• O(logn) operations, preserve heap property

• void sift_down(data* p, int i, unsigned N) {

while (i is internal AND key(i)<key(child(i))) {

exchange i with the larger child of i

}

}

void percolate(data* p, int i, unsigned N) {

while (i is not root AND key(i)>key(parent(i))) {

exchange i with its parent

}

}

4

Heaps: operations

• void find_max(data* p, int i, unsigned N) {

return p[0];

}

• void pop_max(data* p, unsigned N) {

p[0] = p[N-1];

--N;

sift_down(p, 0);

}

• void insert(data* p, data d, unsigned N) {

++N;

p[N] = d;

percolate(p, N);

}

5

Make-heap: linear algorithm

• void make_heap(data* p, unsigned N) {

for(unsigned k = N/2; k>=0; --k)

sift_down(p, k, N);

}

• on level s we have 2K−s nodes each takes s to sift down

•
∑K

s=1 s2K−s = O(2K), N = 2K

• Heap property built from leafs to root

6

Heap sort

• void heap_sort(data* p, unsigned N) {

make_heap(p, N);

for(unsigned k = N-1; k>=0; --k) {

swap p[0] and p[N-1];

sift_down(p, 0, k);

}

}

• t(N) = O(N logN)

7

Heap misc

• Sometimes useful to store order of elements in the heap ex-

plicitly: define as the inverse function to the heap array.

• This does not change overall asymptotic performance

• To figure out who to percolate and sift-down

• Do not need it if only priority queue without updates is needed.

• k-ary heaps make the tree shallower.

8

Heaps

Procedure Binary (wc) Binomial (wc) Fibonacci (am)
make-heap Θ(1) Θ(1) Θ(1)

insert Θ(logn) O(logn) Θ(1)
find-max Θ(1) O(logn) Θ(1)

delete-max Θ(logn) Θ(logn) O(logn)
merge Θ(n) O(logn) Θ(1)

increase-key Θ(logn) Θ(logn) Θ(1)
delete Θ(logn) Θ(logn) O(logn)

*

9

Disjoint sets: union-find

• N objects, set {0,1, . . . , N − 1}

• Partition into disjoint sets – each element in exactly one set

• Each set has a label – one of its members, e.g. the smallest

one: {2,3,7,9} is “set 2”

• Two operations:

FIND: given an object find which set contains it and return

its label

MERGE(UNION): given two different labels merge the cor-

responding two subsets

• hence the name: Union-Find data structure

10

Simple representation

• Array set[N] stores element labels

• Θ(1) find:

int find_simple(int x) { return set[x]; }

• Θ(N) merge:

void merge_simple(int a, int b) {

for(k=0; k<N; ++k)

if(set[k]==max(a,b))

set[k] = min(a,b);

}

11

Amortized setting

• We would like to perform n finds, and N −1 merges not clear

in which order, then the simple algorithms give Θ(n) for all

finds, and Θ(N2) for all merges

• Rooted tree rep: Array set[N] will store forest of rooted trees,

where set[i]==i would indicate a root node, and otherwise

set[k] gives the index of the parent of k.

• Find will follow the parent links to the label node.

• Merge will need to merge two trees.

12

Rooted tree rep functions

• Θ(height) find

int find_rooted(int x) {

while(set[x]!=x)

x = set[x];

return x;

}

• Θ(1) merge

void merge_rooted(int a, int b) {

if(a<b)

set[b] = a;

else

set[a] = b;

}

13

Tree height control

• The above procedure may grow tree height: consider the
following sequence on {0, . . . ,7}
do m(6,7), m(5,6), ..., m(0,1)

• introduce another array height[N]

• void merge_rank(int a, int b) {

if(height(a)==height[b]) {

height(a) = height(b);

set[b] = a;

} else {

if(height(a)<height[b]) set[a] = b;

else set[b] = a;

}

}

14

Tree height control

• Theorem: The above merge procedure ensures that after an

arbitrary sequence of merges starting from initial situation we

have that height[a] is at most blog kc where k is the number

of nodes in tree(a).

• Basis: initially, zero height everywhere

• Induction: assume for m satisfying 1 ≤ m < k. Merge two

smaller trees. Let a ≤ b and k = a + b. Then a ≤ k/2 and

b ≤ k − 1.

• ha 6= hb: then hk ≤ max(blog ac , blog bc).

• ha = hb: then hk = ha+1 ≤ bac+1. But bac ≤ blog(k/2)c ≤
blog k − 1c = blog kc − 1.

15

Path compression

• When doing find relink all the pointers to the root of the

tree: reducing its height

• int find_compress(int x) {

int r = x;

while(set[r]!=r)

r = set[r];

while(x!=r) {

int j = set[x];

set[x] = r;

x = j;

}

}

16

Disjoint set structure

• merge_rank and find_compress form the basis for union-find

structure

• rank is the upper bound on the height of the tree – because

of path compression

• Ackermann’s function variant

A(i, j) =


2j, if i = 0

2, if j = 1

A(i − 1, A(i, j − 1)), otherwise

17

Disjoint set structure

• A(1, j) = 2j, A(2, j) is j powers of 2 stacked A(2,4) =

65,536, grows extremely fast

• α(i, j) = min {k|k ≥ 1 and A(k,4 di/je > log j} .

• for all practical purposes α(i, j) ≤ 3

• Tarjan showed that a sequence of n finds and m merges can

be executed in a time in Θ((m + n)α(m + n, N)) where N is

the size of the set.

18

Dijkstra algorithm

• Given a directed graph G = (N, A), N - nodes, A - directed

edges (arrows)

• Each edge has non-negative length L : A → R+

• One node is source node

• Find the length of the shortest path from the source to each

of the nodes

• Analysis: book and homework

19

Dijkstra algorithm

void Dijkstra(LengthFn& L) {

vector<float> D(n); // n nodes

set<int> C = {1,2, ..., n-1};

for(i=1; i<n; ++i)

D[i] = L(1,i)

for(i=0; i<n-2; ++i) {

v = find_min(heap on D);

C.remove(v);

for_all(w from C)

D[w] = min(D[w], D[v+L(v,w)]);

}

}

20

