EECS 477: Introduction to algorithms. Lecture 11

Prof. Igor Guskov
guskov@eecs.umich.edu

October 10, 2002

Lecture outline: greedy algorithms

- Graph traversals
- Dijkstra
- Making change: greedy!
- MST: Prim and Kruskal

Graph traversals

- Graph traversal: an algorithm that visits all the vertices/edges of a graph in some order
- While traversing we may do some work - augmenting the traversal
- For instance, find a shortest path from A to B
- The complexity of a traversal depends on graph representation (what are those?)
- DFS and BFS

Breadth-first search

```
void BFS(G, start) {
    unmark_all_vertices();
    queue q; q.push(start);
    mark(start); d[start] = 0;
    while(!q.empty()) {
    u = q.pop_front();
    for( v adjacent to u ) {
        if(!is_marked(v)) {
        d[v] = d[u] + 1;
        mark(v);
        q.push(v);
        }
    }
    }
}
```


BFS

- BFS find shortest paths with respect to the hop distance
- BFS uses a queue, DFS uses a stack, otherwise the same
- BFS complexity $O(V+E)$

Edge-weighted graphs

- Given a directed graph $G=(N, A), N$ - nodes, A - directed edges (arrows)
- Each edge has non-negative length $L: A \rightarrow \mathbf{R}^{+}$
- One node is source node
- Find the length of the shortest path from the source to each of the nodes
- Use ∞ for convenience when not connected
- This should be similar to BFS. Except need to prioritize more carefully and we use a priority queue and add the vertex with minimal distance

Dijkstra algorithm

```
void Dijkstra(LengthFn& L) {
    vector<float> D(n); // n nodes
    set<int> C = {1,2, ..., n-1};
    for(i=1; i<n; ++i)
    D[i] = L(1,i)
    for(i=0; i<n-2; ++i) {
    v = find_min( heap on D );
    C.remove(v);
    for_all( w from C )
        D[w] = min( D [w], D[v+L(v,w)] );
    }
}
```


Dijkstra algorīthm

- Proof that Dijkstra works: define $S=N \backslash C$
- Thm: all vertices will be annotated with their shortest path lengths
- Loop invariant:
- true before we start
- induction shows that it holds in the loop
- after the loop is finished it gives us the correctness of the algorithm
- A. D[i] holds shortest path length for $i \in S$
B. D[i] holds shortest special path length for $i \notin S$

Dijkstra algorithm

- Fact: added v is the length of the minimal shortest special path among vertices not in S
- Assume A and B, first prove A, then prove B
- A is proven by contradiction: if $\mathrm{D}[\mathrm{v}]$ is not the shortest path, then there is a shorter non-special path, and its first non-S vertex would have to be chosen instead of v.
- Thus: after a vertex is chosen its D value becomes true shortest path length
- B is shown: the only special paths need updating that would be going via v.

Making change

- Given a set of coin values: $1,5,10,25,50,100, \ldots$
- Need to pay a given amount A using smallest number of coins
- Algorithm: add a highest-valued coin such that the total does not exceed A
- This works for the particular problem above. It's hard to prove that it works though.

Greedy algorithms

- Problem:
- Optimize cost (w.r.t. objective function)
- Solutions are composed from components (candidates)
- A validity check function
- A feasibility check function (checks whether the partial solution can be completed to a valid solution)
- Greedy algorithm
- goes step by step
- maintains partial solution and possible extensions
- selects the best possible extensions (how?)

Greedy verbatim

```
Greedy() {
    initialize_partial_solution();
    while(there are extensions) {
        do {
            choose the best extension;
            check its validity;
        while(it's not valid);
        add that extension to get a new partial solution
        see if the problem is solved, if so return;
    }
}
```


Minimum Spanning Trees

- or simply MSTs
- Now we consider connected undirected graph $G=(V, E)$
- Again edge length assignment $L: E \rightarrow \mathbf{R}^{+}$
- Find subset of edges T with minimal total cost
- That's got to be a tree (since a cycle can drop any of its edges and still stay connected)
- So we call the result an MST
- Towns and telephone network

Minimum Spanning Trees

- Candidates: edges
- Valid solutions: spanning trees
- Objective: minimum total length
- Feasible partial solutions: subgraphs with no cycles
- Selection function: depends on the algorithm

Promising

- Define: a feasible(?) set of edges is promising if it can be extended(?) to an optimal(?) solution
- Lemma: Let $B \subset N, B \neq N$. If T is a promising set of edges whose vertices are fully in B, and if e is the shortest edge that leaves B, then $T \cup\{e\}$ is promising again.
- Proof: Let U be a MST that contains T. Now suppose that e is not in U. Then adding e to U will create a single cycle (why?). Then since e leaves B there will be another edge e^{\prime} leaving(rather entering?) B whose length is not less than that of e. Then we form $U^{\prime}=U \cup\{e\} \backslash\left\{e^{\prime}\right\}$ is an even better MST.

Approaches

- Sort edges, start with smallest, add when still acyclic, grow it. That is Kruskal's algorithm and that works!
- Runtime asymptotics is $\Theta(|E| \log |E|)=\Theta(|E| \log |V|)$.
- Start with a root, add branches of minimal length that do not cycle. That is Prim's algorithm and it works as well.
- Runtime asymptotics is $O(|E| \log |V|)$.

Kruskal's algorithm

```
void Kruskal(G=(V,E), length, vector& T) {
    sort E by increasing length;
    initialize union-find structure;
    E::iterator ei;
    do {
        e = (*(ei++));
        comp1 = find(e.first_vertex);
        comp2 = find(e.second_vertex);
        if(comp1!=comp2) {
        merge(comp1, comp2);
        T.push_back(e);
    }
    } while( T.size()==V.size()-1 );
}
```


Prim's algorithm

```
void Prim(G=(V,E), length, vector& T) {
    for all verts key[v] = infinity;
    key[root] = 0;
    initialize heap on key;
    while(heap not empty()) {
        u = extract-min-heap();
        for(v in adj[u]) {
            if(v in heap and length(u,v)<key[v]) {
            parent[v] = u;
            key[v] = length(u,v);
        }
    }
    }
}
```

