
EECS 477: Introduction to algorithms.

Lecture 11

Prof. Igor Guskov

guskov@eecs.umich.edu

October 10, 2002

1

Lecture outline: greedy algorithms

• Graph traversals

• Dijkstra

• Making change: greedy!

• MST: Prim and Kruskal

2

Graph traversals

• Graph traversal: an algorithm that visits all the vertices/edges

of a graph in some order

• While traversing we may do some work – augmenting the

traversal

• For instance, find a shortest path from A to B

• The complexity of a traversal depends on graph representa-

tion (what are those?)

• DFS and BFS

3

Breadth-first search

void BFS(G, start) {

unmark_all_vertices();

queue q; q.push(start);

mark(start); d[start] = 0;

while(!q.empty()) {

u = q.pop_front();

for(v adjacent to u) {

if(!is_marked(v)) {

d[v] = d[u] + 1;

mark(v);

q.push(v);

}

}

}

}

4

BFS

• BFS find shortest paths with respect to the hop distance

• BFS uses a queue, DFS uses a stack, otherwise the same

• BFS complexity O(V + E)

5

Edge-weighted graphs

• Given a directed graph G = (N, A), N - nodes, A - directed

edges (arrows)

• Each edge has non-negative length L : A → R+

• One node is source node

• Find the length of the shortest path from the source to each

of the nodes

• Use ∞ for convenience when not connected

• This should be similar to BFS. Except need to prioritize more

carefully and we use a priority queue and add the vertex with

minimal distance

6

Dijkstra algorithm

void Dijkstra(LengthFn& L) {

vector<float> D(n); // n nodes

set<int> C = {1,2, ..., n-1};

for(i=1; i<n; ++i)

D[i] = L(1,i)

for(i=0; i<n-2; ++i) {

v = find_min(heap on D);

C.remove(v);

for_all(w from C)

D[w] = min(D[w], D[v+L(v,w)]);

}

}

7

Dijkstra algorithm

• Proof that Dijkstra works: define S = N \ C

• Thm: all vertices will be annotated with their shortest path

lengths

• Loop invariant:

• true before we start

• induction shows that it holds in the loop

• after the loop is finished it gives us the correctness of the

algorithm

• A. D[i] holds shortest path length for i ∈ S

B. D[i] holds shortest special path length for i 6∈ S

8

Dijkstra algorithm

• Fact: added v is the length of the minimal shortest special

path among vertices not in S

• Assume A and B, first prove A, then prove B

• A is proven by contradiction: if D[v] is not the shortest path,

then there is a shorter non-special path, and its first non-S

vertex would have to be chosen instead of v.

• Thus: after a vertex is chosen its D value becomes true short-

est path length

• B is shown: the only special paths need updating that would

be going via v.

9

Making change

• Given a set of coin values: 1,5,10,25,50,100, . . .

• Need to pay a given amount A using smallest number of coins

• Algorithm: add a highest-valued coin such that the total does

not exceed A

• This works for the particular problem above. It’s hard to

prove that it works though.

10

Greedy algorithms

• Problem:

• Optimize cost (w.r.t. objective function)

• Solutions are composed from components (candidates)

• A validity check function

• A feasibility check function (checks whether the partial

solution can be completed to a valid solution)

• Greedy algorithm

• goes step by step

• maintains partial solution and possible extensions

• selects the best possible extensions (how?)

11

Greedy verbatim

Greedy() {

initialize_partial_solution();

while(there are extensions) {

do {

choose the best extension;

check its validity;

while(it’s not valid);

add that extension to get a new partial solution

see if the problem is solved, if so return;

}

}

12

Minimum Spanning Trees

• or simply MSTs

• Now we consider connected undirected graph G = (V, E)

• Again edge length assignment L : E → R+

• Find subset of edges T with minimal total cost

• That’s got to be a tree (since a cycle can drop any of its

edges and still stay connected)

• So we call the result an MST

• Towns and telephone network

13

Minimum Spanning Trees

• Candidates: edges

• Valid solutions: spanning trees

• Objective: minimum total length

• Feasible partial solutions: subgraphs with no cycles

• Selection function: depends on the algorithm

14

Promising

• Define: a feasible(?) set of edges is promising if it can be

extended(?) to an optimal(?) solution

• Lemma: Let B ⊂ N , B 6= N . If T is a promising set of edges

whose vertices are fully in B, and if e is the shortest edge that

leaves B, then T ∪ {e} is promising again.

• Proof: Let U be a MST that contains T . Now suppose that

e is not in U . Then adding e to U will create a single cycle

(why?). Then since e leaves B there will be another edge

e′ leaving(rather entering?) B whose length is not less than

that of e. Then we form U ′ = U ∪ {e} \
{
e′

}
is an even better

MST.

15

Approaches

• Sort edges, start with smallest, add when still acyclic, grow

it. That is Kruskal’s algorithm and that works!

• Runtime asymptotics is Θ(|E| log |E|) = Θ(|E| log |V |).

• Start with a root, add branches of minimal length that do not

cycle. That is Prim’s algorithm and it works as well.

• Runtime asymptotics is O(|E| log |V |).

16

Kruskal’s algorithm

void Kruskal(G=(V,E), length, vector& T) {

sort E by increasing length;

initialize union-find structure;

E::iterator ei;

do {

e = (*(ei++));

comp1 = find(e.first_vertex);

comp2 = find(e.second_vertex);

if(comp1!=comp2) {

merge(comp1, comp2);

T.push_back(e);

}

} while(T.size()==V.size()-1);

}

17

Prim’s algorithm

void Prim(G=(V,E), length, vector& T) {

for all verts key[v] = infinity;

key[root] = 0;

initialize heap on key;

while(heap not empty()) {

u = extract-min-heap();

for(v in adj[u]) {

if(v in heap and length(u,v)<key[v]) {

parent[v] = u;

key[v] = length(u,v);

}

}

}

}

18

