EECS 477: Introduction to algorithms.
Lecture 12

Prof. Igor Guskov
guskov@eecs.umich.edu

October 17, 2002

Lecture outline: greedy algorithms II

e Knapsack
e Scheduling
e Minimizing time

e Wwith deadlines

Greedy algorithms

e Problem:
e Optimize cost (w.r.t. objective function)
e Solutions are composed from components (candidates)
e A validity check function

e A feasibility check function (checks whether the partial
solution can be completed to a valid solution)

e (Greedy algorithm
e goes step by step
e Mmaintains partial solution and possible extensions

e selects the best possible extensions (how?)

Greedy verbatim

Greedy () {
initialize_partial_solution() ;
while(there are extensions) {
do {
choose the best extension;
check its validity;
while(it’s not valid);
add that extension to get a new partial solution

see 1f the problem is solved, if so return;

Knapsack

e n objects, weights w;, values v;

e a knapsack can hold maximal weight of W

e Mmaximize the $ value of what we fit

(21b, $5)

(3Ib, $2)

(51b, $100)

(121b, $6)

max of 9lb

Knapsack: much simpler case?

e Oris it?

e n Objects, weights w;, values v;, w; = v;

e a knapsack can hold maximal weight of W = %Z?zl w;
e can we fill it up full?

e NO polynomial time algorithm is known!

(21b) (3Ib) (51b) (121b)

max of 111lb

Knapsack: breakable objects

e n objects, weights w;, values v;
e a knapsack can hold maximal weight of W
e we can break objects, fractions z; € (0,1)

e Mmaximize Z?:l x;v; subject to Z?:l z,w; < W

x1 =1 xy =2/3 r3 =1 xqg =0

(2Ib, $5) (3Ib, $2) (51b, $100)| [(12Ib, $6)

max of 9lb

Knapsack verbatim: greedy algorithm

float knapsack(const vector<float>& w, const vector<float>& v,
vector<float>& x, float wmax) {
for(int i=0; i<x.size(); ++i) x[i] = 0;
float weight = 0, value = 0O;
while(weight<wmax) {
i = best_remaining_object();
if (weight+w[i] <=wmax) {

x[i] = 1; weight+=w[i]; value+=v[i];
} else {
x[i] = (wmax-weight)/wl[il; weight+=w[il]; value+=v[i];

return value;

}

return value;

Knapsack: strategies

e Choose the most valuable

e Sequence: 3, 4.

x1 =20 xo =0 r3 =1 xq4 =1/3

(2Ib, $5) (3b, $2) (51b, $100)| |(12Ib, $6)

max of 9lb, value $102

Knapsack: strategies

e Choose the lightest

e Sequence: 1, 2, 3.

rx1 =1

o =1

(2Ib, $5)

(3b, $2)

x3 =4/5

x4=0

(51b, $100)

(121b, $6)

max of 9lb, value $87

10

Knapsack: strategies

e Choose the best value per unit weight (that is v;/w;)

e Sequence: 3, 1, 2.
e Provably the best strategy

x1 =1 xp =2/3 r3 =1 xq = 0
(2lb, $5) (3lb, $2) (5lb, $100)| [(12lb, $6)

max of 9lb, value $106.33

11

Knapsack: greedy best theorem

e Choose the best value per unit weight (that is v;/w;)

e Theorem: If objects are selected in order of decreasing v;/w;,
then the algorithm knapsack finds an optimal solution.

e Proof outline: if all the weights are 1 then it is optimal.
Otherwise, order them so that v;/w; decrease, and consider

V(z) = X0 ziv;.
e For some other choice y prove that (choose special 7)

V(@) = V() = Y (@i —ydvi = Y (2 — y)wi— > 0.
=1 1=1

Wy

V(@)= V() > Y @i - ywi L = - Z(a:z yi)w; > 0.
= J Wy i=1

12

Scheduling: min time in system

e A single server
e n customers
e service times t;

e would like to minimize average time that a customer spends
in the system

e since n is fixed we can just minimize T'(p) = Y71 34 1 tp,.

13

Scheduling: min time in system

e Claim: serving in order of increasing service time is optimal

e Firstof all, T(p) =X 1 3% _1tp, =01 (n—k+ L)ty,.

e p iS a permutation

14

Scheduling: min time in system

e If not in order, then we find ¢« < j such that &y, > tp,
e Exchange them!
e Total cost will be better

e Implementation trivial: running time O(nlogn)

| 1 |

| 2 a2 |

| 1 2 1l |

| 2 L2 Jl L
7

2 1 |

2] 1 | | |
2 1 | | L

15

Scheduling with deadlines

e A single server

e n jobs, service time is the same (unit).

e At any time just one job

e Deadlines d;: profit g; is earned only if t; < d;.
e t; = oo if it's not executed

e Example: n=25
1 1 2 3 4 5

g; |40 15 20 60 30
12 3 2 3 1

Scheduling with deadlines

e (Greedy strategy: take the fattest job still available as long as
the set stays feasible

e Feasible set allows at least one feasible sequence of execution

e Lemma: set of k jobs if feasible if and only if indexed in order
of non-decreasing deadlines the sequence 1,...,k is feasible.

e Only If Proof:. if sequence is not feasible then r > d, for
some r, but then there are at least » jobs whose deadlines are
before or on t = r — 1, so that the set is not feasible.

e T heorem: greedy algorithm is optimal. Proof in the book
(p.208)

17

Scheduling with deadlines: slow algorithm

void sequence(const vector<int>& d, vector<int>& j) {
assert(j.empty());
j.push_back(0) ;
for(i=1; i<d.size(); ++i) {
r = j.size()-1;
while(r>=0 && d[jl[r]l]l>max(d[i], r))
--r; // while usefully shiftable
if(d[il>r) { // r contains first non-shiftable
j.push_back(-1);

for(int m=j.size()-1; m>r; --m)
jIm+1] = j[ml;
jlr+1] = 1i;

}

} // so, how slow is this?

18

Scheduling with deadlines faster

e [he same algorithm
e Different feasibility check:
e Start with an empty schedule of length n

e Schedule a job 7 at time
t; = max{k: k <min(d;,n — 1) and k is free}
e To implement define ny = max{k: k <t and k is free}

e [wo s/ots in the same set if their n; are the same

e Use disjoint sets to maintain ‘“the first available slot before
or on t"

19

Scheduling with deadlines: faster algorithm

e Algorithm is in the book p. 214

e Need to maintain array of earliest available times since la-
bels of the disjoint set do not guarantee the minimality when
merging them

e find the desired time (deadline or n)
e get its label [and the earliest available

e if there is a slot insert yourself in there and merge set with
label [and the one immediately to the left

e finally, compress the solution

e at most 2n finds and n merges, so that without sorting we
have O(na(2n,n)) where « is that slow growing function that
is < 4.

20

