
EECS 477: Introduction to algorithms.

Lecture 12

Prof. Igor Guskov

guskov@eecs.umich.edu

October 17, 2002

1

Lecture outline: greedy algorithms II

• Knapsack

• Scheduling

• minimizing time

• with deadlines

2

Greedy algorithms

• Problem:

• Optimize cost (w.r.t. objective function)

• Solutions are composed from components (candidates)

• A validity check function

• A feasibility check function (checks whether the partial

solution can be completed to a valid solution)

• Greedy algorithm

• goes step by step

• maintains partial solution and possible extensions

• selects the best possible extensions (how?)

3

Greedy verbatim

Greedy() {

initialize_partial_solution();

while(there are extensions) {

do {

choose the best extension;

check its validity;

while(it’s not valid);

add that extension to get a new partial solution

see if the problem is solved, if so return;

}

}

4

Knapsack

• n objects, weights wi, values vi

• a knapsack can hold maximal weight of W

• maximize the $ value of what we fit

(2lb, $5) (3lb, $2) (5lb, $100) (12lb, $6)

max of 9lb

5

Knapsack: much simpler case?

• or is it?

• n objects, weights wi, values vi, wi = vi

• a knapsack can hold maximal weight of W = 1
2

∑n
i=1 wi

• can we fill it up full?

• No polynomial time algorithm is known!

(2lb) (3lb) (5lb) (12lb)

max of 11lb
6

Knapsack: breakable objects

• n objects, weights wi, values vi

• a knapsack can hold maximal weight of W

• we can break objects, fractions xi ∈ (0,1)

• maximize
∑n

i=1 xivi subject to
∑n

i=1 xiwi ≤ W

(2lb, $5)

x1 = 1

(3lb, $2)

x2 = 2/3

(5lb, $100)

x3 = 1

(12lb, $6)

x4 = 0

max of 9lb

7

Knapsack verbatim: greedy algorithm

float knapsack(const vector<float>& w, const vector<float>& v,

vector<float>& x, float wmax) {

for(int i=0; i<x.size(); ++i) x[i] = 0;

float weight = 0, value = 0;

while(weight<wmax) {

i = best_remaining_object();

if(weight+w[i]<=wmax) {

x[i] = 1; weight+=w[i]; value+=v[i];

} else {

x[i] = (wmax-weight)/w[i]; weight+=w[i]; value+=v[i];

return value;

}

}

return value;

}

8

Knapsack: strategies

• Choose the most valuable

• Sequence: 3, 4.

(2lb, $5)

x1 = 0

(3lb, $2)

x2 = 0

(5lb, $100)

x3 = 1

(12lb, $6)

x4 = 1/3

max of 9lb, value $102

9

Knapsack: strategies

• Choose the lightest

• Sequence: 1, 2, 3.

(2lb, $5)

x1 = 1

(3lb, $2)

x2 = 1

(5lb, $100)

x3 = 4/5

(12lb, $6)

x4 = 0

max of 9lb, value $87

10

Knapsack: strategies

• Choose the best value per unit weight (that is vi/wi)

• Sequence: 3, 1, 2.

• Provably the best strategy

(2lb, $5)

x1 = 1

(3lb, $2)

x2 = 2/3

(5lb, $100)

x3 = 1

(12lb, $6)

x4 = 0

max of 9lb, value $106.33

11

Knapsack: greedy best theorem

• Choose the best value per unit weight (that is vi/wi)

• Theorem: If objects are selected in order of decreasing vi/wi,
then the algorithm knapsack finds an optimal solution.

• Proof outline: if all the weights are 1 then it is optimal.
Otherwise, order them so that vi/wi decrease, and consider
V (x) =

∑n
i=1 xivi.

• For some other choice y prove that (choose special j)

V (x)− V (y) =
n∑

i=1

(xi − yi)vi =
n∑

i=1

(xi − yi)wi
vi

wi
≥ 0.

V (x)− V (y) ≥
n∑

i=1

(xi − yi)wi
vj

wj
=

vj

wj

n∑
i=1

(xi − yi)wi ≥ 0.

12

Scheduling: min time in system

• A single server

• n customers

• service times ti

• would like to minimize average time that a customer spends

in the system

• since n is fixed we can just minimize T (p) =
∑n

i=1
∑i

k=1 tpi.

13

Scheduling: min time in system

• Claim: serving in order of increasing service time is optimal

• First of all, T (p) =
∑n

i=1
∑i

k=1 tpk =
∑n

k=1(n− k + 1)tpk.

• p is a permutation

14

Scheduling: min time in system

• If not in order, then we find i < j such that tpi > tpj

• Exchange them!

• Total cost will be better

• Implementation trivial: running time O(n logn)

i j
i j
i j
i

j i
j i
j i
j

15

Scheduling with deadlines

• A single server

• n jobs, service time is the same (unit).

• At any time just one job

• Deadlines di: profit gi is earned only if ti ≤ di.

• ti = ∞ if it’s not executed

• Example: n = 5

i 1 2 3 4 5
gi 40 15 20 60 30
di 2 3 2 3 1

16

Scheduling with deadlines

• Greedy strategy: take the fattest job still available as long as

the set stays feasible

• Feasible set allows at least one feasible sequence of execution

• Lemma: set of k jobs if feasible if and only if indexed in order

of non-decreasing deadlines the sequence 1, . . . , k is feasible.

• Only If Proof: if sequence is not feasible then r > dr for

some r, but then there are at least r jobs whose deadlines are

before or on t = r − 1, so that the set is not feasible.

• Theorem: greedy algorithm is optimal. Proof in the book

(p.208)

17

Scheduling with deadlines: slow algorithm

void sequence(const vector<int>& d, vector<int>& j) {

assert(j.empty());

j.push_back(0);

for(i=1; i<d.size(); ++i) {

r = j.size()-1;

while(r>=0 && d[j[r]]>max(d[i], r))

--r; // while usefully shiftable

if(d[i]>r) { // r contains first non-shiftable

j.push_back(-1);

for(int m=j.size()-1; m>r; --m)

j[m+1] = j[m];

j[r+1] = i;

}

}

} // so, how slow is this?

18

Scheduling with deadlines faster

• The same algorithm

• Different feasibility check:

• Start with an empty schedule of length n

• Schedule a job i at time

ti = max {k : k ≤ min(di, n− 1) and k is free}

• To implement define nt = max {k : k ≤ t and k is free}

• Two slots in the same set if their nt are the same

• Use disjoint sets to maintain “the first available slot before

or on t”

19

Scheduling with deadlines: faster algorithm

• Algorithm is in the book p. 214

• Need to maintain array of earliest available times since la-
bels of the disjoint set do not guarantee the minimality when
merging them

• find the desired time (deadline or n)

• get its label l and the earliest available

• if there is a slot insert yourself in there and merge set with
label l and the one immediately to the left

• finally, compress the solution

• at most 2n finds and n merges, so that without sorting we
have O(nα(2n, n)) where α is that slow growing function that
is < 4.

20

