EECS 477: Introduction to algorithms. Lecture 12

Prof. Igor Guskov
guskov@eecs.umich.edu

October 17, 2002

Lecture outline: greedy algorithms II

- Knapsack
- Scheduling
- minimizing time
- with deadlines

Greedy algorithms

- Problem:
- Optimize cost (w.r.t. objective function)
- Solutions are composed from components (candidates)
- A validity check function
- A feasibility check function (checks whether the partial solution can be completed to a valid solution)
- Greedy algorithm
- goes step by step
- maintains partial solution and possible extensions
- selects the best possible extensions (how?)

Greedy verbatim

```
Greedy() {
    initialize_partial_solution();
    while(there are extensions) {
        do {
            choose the best extension;
            check its validity;
        while(it's not valid);
        add that extension to get a new partial solution
        see if the problem is solved, if so return;
    }
}
```


Knapsack

- n objects, weights w_{i}, values v_{i}
- a knapsack can hold maximal weight of W
- maximize the $\$$ value of what we fit

Knapsack: much simpler case?

- or is it?
- n objects, weights w_{i}, values $v_{i}, w_{i}=v_{i}$
- a knapsack can hold maximal weight of $W=\frac{1}{2} \sum_{i=1}^{n} w_{i}$
- can we fill it up full?
- No polynomial time algorithm is known!

Knapsack: breakable objects

- n objects, weights w_{i}, values v_{i}
- a knapsack can hold maximal weight of W
- we can break objects, fractions $x_{i} \in(0,1)$
- maximize $\sum_{i=1}^{n} x_{i} v_{i}$ subject to $\sum_{i=1}^{n} x_{i} w_{i} \leq W$

Knapsack verbatim: greedy algorithm

```
float knapsack(const vector<float>& w, const vector<float>& v,
            vector<float>& x, float wmax) {
    for(int i=O; i<x.size(); ++i) x[i] = 0;
    float weight = 0, value = 0;
    while(weight<wmax) {
    i = best_remaining_object();
    if(weight+w[i]<=wmax) {
        x[i] = 1; weight+=w[i]; value+=v[i];
    } else {
        x[i] = (wmax-weight)/w[i]; weight+=w[i]; value+=v[i];
        return value;
    }
    }
    return value;
}
```


Knapsack: strategies

- Choose the most valuable
- Sequence: 3, 4.

Knapsack: strategies

- Choose the lightest
- Sequence: 1, 2, 3 .

$x_{1}=1$	$x_{2}=1$	$x_{3}=4 / 5$	$x_{4}=0$
$(2 \mathrm{lb}, \$ 5)$	$(3 \mathrm{lb}, \$ 2)$	$(5 \mathrm{lb}, \$ 100)$	$(12 \mathrm{lb}, \$ 6)$

max of 9lb, value $\$ 87$

Knapsack: strategies

- Choose the best value per unit weight (that is v_{i} / w_{i})
- Sequence: 3, 1, 2.
- Provably the best strategy

Knapsack: greedy best theorem

- Choose the best value per unit weight (that is v_{i} / w_{i})
- Theorem: If objects are selected in order of decreasing v_{i} / w_{i}, then the algorithm knapsack finds an optimal solution.
- Proof outline: if all the weights are 1 then it is optimal. Otherwise, order them so that v_{i} / w_{i} decrease, and consider $V(x)=\sum_{i=1}^{n} x_{i} v_{i}$.
- For some other choice y prove that (choose special j)

$$
\begin{gathered}
V(x)-V(y)=\sum_{i=1}^{n}\left(x_{i}-y_{i}\right) v_{i}=\sum_{i=1}^{n}\left(x_{i}-y_{i}\right) w_{i} \frac{v_{i}}{w_{i}} \geq 0 . \\
V(x)-V(y) \geq \sum_{i=1}^{n}\left(x_{i}-y_{i}\right) w_{i} \frac{v_{j}}{w_{j}}=\frac{v_{j}}{w_{j}} \sum_{i=1}^{n}\left(x_{i}-y_{i}\right) w_{i} \geq 0 .
\end{gathered}
$$

Scheduling: min time in system

- A single server
- n customers
- service times t_{i}
- would like to minimize average time that a customer spends in the system
- since n is fixed we can just minimize $T(p)=\sum_{i=1}^{n} \sum_{k=1}^{i} t_{p_{i}}$.

Scheduling: min time in system

- Claim: serving in order of increasing service time is optimal
- First of all, $T(p)=\sum_{i=1}^{n} \sum_{k=1}^{i} t_{p_{k}}=\sum_{k=1}^{n}(n-k+1) t_{p_{k}}$.
- p is a permutation

Scheduling: min time in system

- If not in order, then we find $i<j$ such that $t_{p_{i}}>t_{p_{j}}$
- Exchange them!
- Total cost will be better
- Implementation trivial: running time $O(n \log n)$

Scheduling with deadlines

- A single server
- n jobs, service time is the same (unit).
- At any time just one job
- Deadlines d_{i} : profit g_{i} is earned only if $t_{i} \leq d_{i}$.
- $t_{i}=\infty$ if it's not executed
- Example: $n=5$

i	1	2	3	4	5
g_{i}	40	15	20	60	30
d_{i}	2	3	2	3	1

Scheduling with deadlines

- Greedy strategy: take the fattest job still available as long as the set stays feasible
- Feasible set allows at least one feasible sequence of execution
- Lemma: set of k jobs if feasible if and only if indexed in order of non-decreasing deadlines the sequence $1, \ldots, k$ is feasible.
- Only If Proof: if sequence is not feasible then $r>d_{r}$ for some r, but then there are at least r jobs whose deadlines are before or on $t=r-1$, so that the set is not feasible.
- Theorem: greedy algorithm is optimal. Proof in the book (p.208)

Scheduling with deadlines: slow algorithm

```
void sequence(const vector<int>& d, vector<int>& j) {
    assert(j.empty());
    j.push_back(0);
    for(i=1; i<d.size(); ++i) {
        r = j.size()-1;
        while( r>=0 && d[j[r]]>max(d[i], r) )
                --r; // while usefully shiftable
        if(d[i]>r) { // r contains first non-shiftable
        j.push_back(-1);
        for(int m=j.size()-1; m>r; --m)
            j[m+1] = j[m];
        j[r+1] = i;
        }
    }
} // so, how slow is this?
```


Scheduling with deadlines faster

- The same algorithm
- Different feasibility check:
- Start with an empty schedule of length n
- Schedule a job i at time

$$
t_{i}=\max \left\{k: k \leq \min \left(d_{i}, n-1\right) \text { and } k \text { is free }\right\}
$$

- To implement define $n_{t}=\max \{k: k \leq t$ and k is free $\}$
- Two slots in the same set if their n_{t} are the same
- Use disjoint sets to maintain "the first available slot before or on $t^{\prime \prime}$

Scheduling with deadlines: faster algorithm

- Algorithm is in the book p. 214
- Need to maintain array of earliest available times since labels of the disjoint set do not guarantee the minimality when merging them
- find the desired time (deadline or n)
- get its label l and the earliest available
- if there is a slot insert yourself in there and merge set with label l and the one immediately to the left
- finally, compress the solution
- at most $2 n$ finds and n merges, so that without sorting we have $O(n \alpha(2 n, n))$ where α is that slow growing function that is <4.

