Divide and Conquer

EECS 477
Lecture 14, 10/31/2002

Divide and Conquer

result_t algoDC(x) {
 if(x is small) return algoAdHoc(x);
 decompose x into x[0], x[1], ..., x[n-1]
 for(i=0; i<n; ++i) y[i]=algoDC(x[i]);
 recombine y[i] to obtain solution y
 return y;
}

Analyze via recurrence

- Generally
 \[T(L) = T(L_0) + \ldots + T(L_{n-1}) + f(L) \]
- Easier case: \(T(L) = a T(L/b) + f(n) \) [MTh]
 - Ex: merge sort: \(T(L) = 2 T(L/2) + \Theta(L) \)
 - Then \(T(L) = \Theta(L \log L) \)
 - Ex: binary search: \(T(L) = T(L/2) + O(1) \)
 - Then \(T(L) = O(\log L) \)
- Choice of threshold is important

Long integers multiplication

- Find \(X \cdot Y \)
 - Simple algorithms are \(O(m \cdot n) \)
 \(m=\log X, n=\log Y \)
- \(X = 10^m A + B, Y = 10^n C + D \)
- \(X \cdot Y = (10^m A + B) \cdot (10^n C + D) =
 = 100^m A \cdot C + 10^m (A \cdot D + B \cdot C) + B \cdot D \)
- \(AD + BC = (A + B) \cdot (C + D) - AC - BD \)
Long integer multiplication

INT mult(INT X, INT Y) {
 if(size(X) small) return X*Y;
 split X into (A,B), split Y into (C,D)
 AC = mult(A,C); BD = mult(B,D);
 ADpBC = mult(A+B,C+D) - AC - BD;
 return (AC<<2) + (ADpBC<<1)+BD;
}

Long integer multiplication

- Recurrence for X with even size N
 \(T(N) = 3T(N/2) + O(N) \)
- MT: \(a=3, b=2 \)
 \(N^\log 3 \) dominates N
- Hence for powers of two we get
 \(T(N) = O(N^\log 3) \)
- Extend it to the whole range

Long integer multiplication

- X is much shorter than Y
- M<<N
- Split Y into M-sized chunks
 - There will be \(N/M \) of those
- One smaller multiplication will take \(M^\log 3 \)
- Total: \((N/M) \cdot M^\log 3 = N \cdot M^{\log(3/2)} \)
 - Book pp.219-223

Finding median

- Array A[N]
- Selection problem
 - find \(s^{th} \) smallest element
 - if sorted it would be in position \(s \)
 - in particular, for the median \(s=\text{ceil}(N/2) \)
 - Median: as many below as above
 - Ex: [3,2,6,10,100,1,1000]
- Via sorting: \(\Theta(N \log N) \)
Median in linear time

- Blum et al. '72
- Pivoting
 \[[k, l] = \text{pivot}(A[i..j], p) \]
 three sections \([i..k] [k+1..l-1] [l..j] \]
- Selection call on pivoting recursively
 - If \(s < k < l \) then we are done
 - Otherwise our array is smaller, recurse

Selection in linear time

float selection(A, N, s) {
 i=0; j=N-1;
 while(1) { // answer lies between i and j
 p = _median(A, i, j);
 [k, l] = pivot(A, i, j);
 if(s<=k) j=k;
 else if(s>=l) i=l;
 else return p;
 }
}

Selection

- The correctness of "selection" does not depend on the choice of "_median"
 _median(A, i, j) = i
 - Results in linear time on average
 - Assume that all elements are different
 - Assume that all \(n! \) permutations are equally likely
 - Worst case is quadratic
- Better than sorting

Pseudo median

- Approximation to the median
float pseudo_median(A, N) {
 if(n<=5) return adhoc_median(A);
 nz = n/5;
 float Z[nz];
 for(i=0; i<nz; ++i)
 Z[i] = adhoc_median(A[5*i..5*i+4]);
 return selection(Z, ceil(nz/2));
}
Pseudo median

Approximation
- there is a bound on how far we are from the precise answer
 - At least 3N/10 elements are below the result
 - 3N/10 < rank(pseudo_median(A)) < 7N/10

Runtime analysis

float rec_selection(A, i, j, s) { // t(N)
 p = pseudo_median(A, i, j); // t(N/5)+O(N)
 [k,l] = pivot(A, i, j); // Θ(N)
 if(s<=k)
 rec_selection(A, i, k, s); // t(7n/10)
 else if(s>=l)
 rec_selection(A, k, j, s); // t(7n/10)
 else return p;
} /* see book pp.240-242 for more detail */

Recurrence

T(N) = T(N/5) + T(7N/10) + O(N)
Prove that T(N) = K*N (will choose K below)
Inductive step:
- assume that T(L) = K*L for L<N
T(N) = K*N/5 + K*7*N/10 + O(N)
 = K*N*(1/5+7/10) + O(N)
 = 0.9*K*N + c*N
 = (0.9*K+c)*N
choose K = 10^c, so that c=0.1*K
T(N) = (0.9*K + 0.1*K)*N = K*N

Matrix multiplication

- Simple algorithm Θ(N^3)
- Strassen (69)
 - Two 2x2 matrices can be multiplied using 7 multiplication instead of 8
 - Recurrence t(n) = 7 t(n/2) + O(N^2)
 - MT: a=7, b=2, log 7≈2.81, n^log 7 dominates n^2
 - t(n) = Θ(N^log 7)
 - Book pp. 242-243
 - Can go down to 2.376