Dynamic Programming

Solution splits into parts
If a solution is optimal then its parts have to be optimal too

Algorithm
- Compute subparts for smaller instances, store results
- Combine them
- Bottom-up approach
- Simple example: \(C(n, k) \)

Pascal’s triangle
- Keep intermediate results
 - Just one line of the table suffices
- Memory \(\Theta(n) \)
- Time \(\Theta(nk) \)

```
unsigned Binomial(unsigned n, unsigned k) {
    if (k==0 || k==n) return 1;
    else return Binomial(n -1,k-1) + Binomial(n -1,k);
} //\( \Omega(C(n,k)) \) algorithm
```

```
1
1 1
1 2 1
...  
```

Another example: World series pp. 261-262
Making change

- Pay a given amount with smallest number of coins
 - Greedy algorithm doesn’t always work
 - \{1,4,6\} paying 8: greedy 6+1+1, optimal 4+4
 - Paying out 15: 6+4+4+1 is optimal
 - Subparts are optimal too 10=6+4 and 5=4+1
 - Once we know how to pay 10 optimally we should remember that: build a table

Making change: pay amount N

- Coins
 - Denominations \(d[1], \ldots, d[M]\)
- Table \(c(i,j)\): \(i=1..M, j=0..N\)
 - the minimum number of coins to pay amount \(j\) using coins \(d[1], \ldots, d[i]\)
- Optimality
 - \(c(i,0) = 0\)
 - \(c(i,j) = \min\{ c(i-1,j), 1+c(i,j-d[i]) \}\)
 - If any value falls outside of the table put it to +\(\infty\)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Inf</td>
<td>1</td>
<td>Inf</td>
<td>2</td>
<td>Inf</td>
<td>3</td>
<td>Inf</td>
<td>4</td>
<td>Inf</td>
<td>5</td>
<td>Inf</td>
<td>6</td>
<td>Inf</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Inf</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Inf</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Making change

- Runtime to fill the table: \(\Theta((N+1)*M)\)
- Runtime to extract the set of coins
 - \(M\) steps up, \(c(M,N)\) steps left.
 - Total: \(\Theta(M+c(M,N))\)
- What is different between this and D&C approach?
 - List of things
Knapsack problem

- Non-breakable objects: \(i=1..N\)
- Weights \(w_i\), value \(v_i\)
- Now we can \(x_i=0\) or \(1\)
- Constraint \(\sum x_i w_i \leq W\)
- Maximize \(\sum x_i v_i\)
- Greedy no longer works: \(W = 5\)
 \{(4oz, $28), (3oz, $18), (2oz, $12)\}

Knapsack: DP

- \(V[i,j]\) = maximum value if \(W=j\) and we can choose among objects \(1..i\)
- \(V[i,j] = \max\{ V[i-1,j], V[i-1, j-w_i]+v_i \}\)
- \(V[0,j] = 0\), when \(j\geq0\)
- \(V[i,j] = -\infty\), when \(j<0\)
- \(V[i,0] = 0\)
- Build a table again

Knapsack: table

\[
\begin{array}{cccccccccccc}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
2oz, $4 & 0 & 0 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
3oz, $7 & 0 & 0 & 4 & 7 & & & & & & & & & \\
5oz, $2 & 0 & 0 & & & & & & & & & & & \\
7oz, $6 & 0 & 0 & & & & & & & & & & & \\
\end{array}
\]

Knapsack

- Algorithm
- Runtime \(\Theta(nW)\)
- Finding the load composition \(O(n+W)\)
- Is this fast or slow?
- What would be a bad example?
Floyd’s algorithm

- Shortest paths in a directed graphs between all the pairs of vertices
 - Dijkstra does paths from one seed vertex
- Graph \(G = (V, E) \)
 - Arrows \(E \) – stored in the edge length matrix \(L[i,j] = \text{distance from } i \text{ to } j, \infty \text{ if no edge} \)
- If \(k \) is on the shortest path from \(i \) to \(j \), then \((i \text{ to } k), (k \text{ to } j)\) is optimal too

Floyd’s algorithm

- Constructing matrix \(D \) of shortest path distances
 - \(D_k \) is the matrix of shortest paths using only vertices \(1..k \) as intermediate
 - \(D_k[i,j] = \min \{ D_{k-1}[i,j], D_{k-1}[i,k]+D_{k-1}[k,j] \} \)
 - Start with \(D_0 = L \)
 - \(N \times N \) matrix \(N \) times
 - Runtime \(\Theta(N^3) \) (Dijkstra \(\Theta((A+N) \log N) \))

Chained matrix multiplication

- \(c_{ij} = \sum_k a_{ik} b_{kj} \)
- \(A \) – \(p \times q \) matrix
- \(B \) – \(q \times r \) matrix
- \(AB \) takes \(pqr \) scalar multiplication
- Example ABCD: what is the best order?
 - 2x3, 3x5, 5x2, 2x7
 - Greedy algorithm does not work

Chained matrix multiplication

- \(D[0], D[1], \ldots, D[N] \) dimensions
- Matrix \(M \) has dimensions \(D[i-1] \times D[i] \)
- Optimality
 - \(P(i, i+s) = \min_{k} \{ P(i,k) + P(k+1,i+s) + D[i-1][k]D[i+s] \} \)
- Start with \(P(i, i+1) = D[i-1][j]D[i+1] \)
- Go to higher \(s \)