Dynamic
Programming

EECS 477
Lecture 15, 11/5/2002

Dynamic Programming

m Solution splits into parts

m If a solution is optimal then its parts
have to be optimal too

Algorithm

m Compute subparts for smaller
instances, store results

m Combine them
m Bottom-up approach
m Simple example: C(n,k)

unsigned Binomial(unsigned n, unsigned k) {
if(k==0 || k==n)return1;
else return Binomial(n-1,k1) + Binomial(n-1,k);
} 111 W(C(n,k)) algorithm

Pascal’ s triangle

m Keep intermediate results
—Just one line of the table suffices

m Memory Q(n)

ime Q(nk)

ddition is elementary operation

Another example: World

C(n1k1) C(n-1K) ries pp. 261-262

c(nk)

Making change

m Pay a given amount with smallest
number of coins

— Greedy algorithm doesn’t always work

« {1,4,6} paying 8: greedy 6+1+1, optimal 4+4

— Paying out 15: 6+4+4+1 is optimal
« Subparts are optimal too 10=6+4 and 5=4+1
* Once we know how to pay 10 optimally we

should remember that: build a table

Making change: pay amount N

m Coins
— Denominations d[1],...,d[M]
m Table c(i,j): i=1..M, j=0..N
—the minimum number of coins to pay
amount j using coins d[1],...,d[i]
m Optimality
c(i,0)=0
c(i,j) = min { c(i-1,j), 1+c(i,j-d[i]) }
If any value falls outside of the table put it to +¥

Making change

m c(i,j) = min { c(i-1,j), 1+c(i,j-d[i]) }

m Coins: {2,3,7}

— Fill by rows, read off solution later

o1 > RIAK B |7 9 11011112 h3
P [0 Inffl [Inf|2 Jinfi3 [Inf Inf5 [Inf |nf
B 10 [nfl1 1 [2 P P 3 I 7 <)
7 10 [nfl1 1 [2 P P 1 2 P BB B

Making change

m Runtime to fill the table: Q((N+1)*M)
m Runtime to extract the set of coins
M steps up, c(M,N) steps left.
Total: Q(M+c(M,N))

= What is different between this and D&C
approach?
— List of things

Knapsack problem

= Non-breakable objects: i=1..N

= Weights w;, value y

= Now we can xi=0 or 1

m Constraint S, x; w; £ W

= Maximize S x; v,

m Greedy no longer works: W =5
{ (40z, $28), (30z, $18), (20z, $12) }

Knapsack: DP

m V[i,j] = maximum value if W=j and we
can choose among objects 1..i

= V[i,j] = max{ V[i-1,j], V[i-1, j-w]+u}

m V[0,j] =0, when 20

m V[i,j] = -¥, when j<0

mV[i,0]=0

m Build a table again

Knapsack: table
W =12

fil-byrow

01112 B4 6 [r B [9 [10[11]12
Poz, $410 0 |4 4 KU 4 14 U 4 |4 14 14 |4
Boz, $7 10 [0 4 [7
boz. $2 10 [0
[foz. $6 10 10

Knapsack

m Algorithm

® Runtime Q(nW)

m Finding the load composition O(n+W)
m Is this fast or slow?

m What would be a bad example?

Floyd's algorithm

m Shortest paths in a directed graphs
between all the pairs of vertices
— Dijkstra does paths from one seed vertex
m Graph G=[N={1,..,N} ,A]
— Arrows A —stored in the edge length matrix
L[i,j] = distance from i to j, infinity if no edge
m If k is on the shortest path from i to j,
then (i to k), and (k to j) is optimal too

Floyd' s algorithm

m Constructing matrix D of shortest path
distances

m D, is the matrix of shortest paths using
only vertices 1..k as intermediate
® Dy[i,j] = min { Dy4[i,j], Dyqfi,K]+Dy.1[kj] }
m Start with Dy = L
m N by N matrix N times
— Runtime Q(N3) (Dijkstra NQ((A+N) log N))

Chained matrix multiplication

B Cj = S ayc by

m A — p by g matrix

®m B — q by r matrix

m AB takes pqr scalar multiplication

m Example ABCD: what is the best order?
m 2x3, 3x5, 5x2, 2x7

m Greedy algorithm does not work

Chained matrix multiplication

m D[0], D[1], ..., D[N] dimensions
m Matrix M; has dimensions D[i-1] x D[i]
m Optimality

P(i,i+S) = MiNgyg.s {P(i,k)+P(k+1,i+s)+D[-
1]D[K]D[i+s]}

m Start with P(i,i+1) = DJi-1]DJ[i]D[i+1]
m Go to higher s

