Dynamic Programming

EECS 477
Lecture 15, 11/5/2002

- Simple example: C(n,k)
unsigned Binomial(unsigned n, unsigned k) \{
if $(k==0 \| k==n)$ return 1 ;
else return Binomial($n-1, k-1)+\operatorname{Binomial}(n-1, k)$;
\} //// $\Omega(\mathrm{C}(\mathrm{n}, \mathrm{k}))$ algorithm

Making change: pay amount N

- Coins
- Denominations $d[1], \ldots, d[M]$
- Table $c(i, j): i=1 . . M, j=0 . . N$
- the minimum number of coins to pay
amount j using coins $d[1], \ldots, d[i]$
- Optimality
$c(i, 0)=0$
$c(i, j)=\min \{c(i-1, j), 1+c(i, j-d[i])\}$
If any value falls outside of the table put it to $+\infty$

Making change

- Runtime to fill the table: $\Theta\left((\mathrm{N}+1)^{*} \mathrm{M}\right)$
- Runtime to extract the set of coins M steps up, $c(M, N)$ steps left.
Total: $\Theta(M+c(M, N))$
- What is different between this and D\&C approach?
- List of things

Knapsack problem

■ Non-breakable objects: $\mathrm{i}=1 . . \mathrm{N}$
\square Weights w_{i}, value v

- Now we can $x_{i}=0$ or 1

■ Constraint $\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \mathrm{W}_{\mathrm{i}} \leq \mathrm{W}$
\square Maximize $\sum_{i} x_{i} v_{i}$
■ Greedy no longer works: W = 5 \{ (4oz, \$28), (3oz, \$18), (2oz, \$12) \}

Knapsack: DP
$\square \mathrm{V}[\mathrm{i}, \mathrm{j}]=$ maximum value if $\mathrm{W}=\mathrm{j}$ and we can choose among objects $1 . . \mathrm{i}$
$■ V[i, j]=\max \left\{V[i-1, j], V\left[i-1, j-w_{i}\right]+v_{i}\right\}$
$\square V[0, j]=0$, when $j \geq 0$
$\square V[i, j]=-\infty$, when $j<0$
$\square \mathrm{V}[\mathrm{i}, 0]=0$
■ Build a table again

Knapsack

- Algorithm
- Runtime $\Theta(\mathrm{nW})$
\square Finding the load composition $\mathrm{O}(\mathrm{n}+\mathrm{W})$
\square Is this fast or slow?
■ What would be a bad example?

Floyd's algorithm

■ Shortest paths in a directed graphs between all the pairs of vertices

- Dijkstra does paths from one seed vertex
- Graph $\mathrm{G}=[\mathrm{N}=\{1, ., \mathrm{N}\}, \mathrm{A}]$
- Arrows A - stored in the edge length matrix
$L[i, j]=$ distance from i to j, infinity if no edge
- If k is on the shortest path from i to j , then (i to k), and (k to j) is optimal too

Floyd's algorithm

- Constructing matrix D of shortest path distances
$\square D_{k}$ is the matrix of shortest paths using only vertices 1 .. k as intermediate
$\square D_{k}[i, j]=\min \left\{D_{k-1}[i, j], D_{k-1}[i, k]+D_{k-1}[k, j]\right\}$
\square Start with $D_{0}=L$
$\square \mathrm{N}$ by N matrix N times
- Runtime $\Theta\left(N^{3}\right)$ (Dijkstra $N \Theta((A+N) \log N)$)

Chained matrix multiplication
$\mathrm{C}_{\mathrm{ij}}=\Sigma_{\mathrm{k}} \mathrm{a}_{\mathrm{ik}} \mathrm{b}_{\mathrm{kj}}$

- A p by q matrix
$\square B-q$ by r matrix
- AB takes pqr scalar multiplication

■ Example ABCD: what is the best order?

- $2 \times 3,3 \times 5,5 \times 2$, 2×7

■ Greedy algorithm does not work

Chained matrix multiplication
$\square \mathrm{D}[0], \mathrm{D}[1], \ldots, \mathrm{D}[\mathrm{N}]$ dimensions
\square Matrix M_{i} has dimensions $D[i-1] \times D[i]$

- Optimality
$P(i, i+s)=\min _{i \leq k S i+s}\{P(i, k)+P(k+1, i+s)+D[i-$ 1]D[k]D[i+s]\}
\square Start with $\mathrm{P}(\mathrm{i}, \mathrm{i}+1)=\mathrm{D}[\mathrm{i}-1] \mathrm{D}[\mathrm{i}] \mathrm{D}[\mathrm{i}+1]$
■ Go to higher s

