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Dynamic 
Programming

EECS 477
Lecture 15, 11/5/2002

Dynamic Programming

n Solution splits into parts
n If a solution is optimal then its parts 

have to be optimal too

A B

M1

M2

M3

M4

M5

d(A,B)=mink {d(A,Mk) + d(Mk,B)}

Algorithm

nCompute subparts for smaller 
instances, store results

nCombine them
n Bottom-up approach
n Simple example: C(n,k)
unsigned Binomial(unsigned n, unsigned k) {

if(k==0 || k==n) return 1;
else return Binomial(n-1,k-1) + Binomial(n-1,k);

}  //// Ω (C(n,k)) algorithm

Pascal’s triangle

n Keep intermediate results
– Just one line of the table suffices

nMemory Θ(n)
n Time Θ(nk) 

• Addition is elementary operation

Another example: World
series pp. 261-262
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1      1
1      2       1
…

C(n-1,k-1)   C(n-1,k)
C(n,k)
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Making change

n Pay a given amount with smallest 
number of coins
– Greedy algorithm doesn’t always work

• {1,4,6} paying 8: greedy 6+1+1, optimal 4+4
– Paying out 15: 6+4+4+1 is optimal

• Subparts are optimal too 10=6+4 and 5=4+1
• Once we know how to pay 10 optimally we 

should remember that: build a table

Making change: pay amount N 

nCoins
– Denominations d[1],…,d[M]

n Table c(i,j): i=1..M, j=0..N
– the minimum number of coins to pay 

amount j using coins d[1],…,d[i]
nOptimality

c(i,0) = 0 
c(i,j) = min { c(i-1,j), 1+c(i,j-d[i]) }

If any value falls outside of the table put it to +∞

Making change

n c(i,j) = min { c(i-1,j), 1+c(i,j-d[i]) }
nCoins: {2,3,7}

– Fill by rows, read off solution later

333223122211Inf07

544433322211Inf03

Inf6Inf5Inf4Inf3Inf2Inf1Inf02

131211109876543210

Making change

nRuntime to fill the table: Θ((N+1)*M)
nRuntime to extract the set of coins

M steps up, c(M,N) steps left. 
Total: Θ(M+c(M,N))

nWhat is different between this and D&C 
approach?
– List of things
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Knapsack problem

nNon-breakable objects: i=1..N
nWeights wi, value vi
nNow we can xi=0 or 1

nConstraint Σi xi wi ≤ W

nMaximize Σi xi vi

nGreedy no longer works: W = 5
{ (4oz, $28), (3oz, $18), (2oz, $12) }

Knapsack: DP

n V[i,j] = maximum value if W=j and we 
can choose among objects 1..i

n V[i,j] = max{ V[i-1,j], V[i-1, j-wi]+vi }
n V[0,j] = 0, when j≥0
n V[i,j] = -∞, when j<0
n V[i,0] = 0
n Build a table again

Knapsack: table

nW = 12
– fill by row

007oz, $6

005oz, $2

74003oz, $7

44444444444002oz, $4

1211109876543210

Knapsack

n Algorithm
nRuntime Θ(nW)
n Finding the load composition O(n+W)
n Is this fast or slow?
nWhat would be a bad example?
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Floyd’s algorithm

n Shortest paths in a directed graphs 
between all the pairs of vertices
– Dijkstra does paths from one seed vertex

nGraph G=[N={1,..,N} ,A]
– Arrows A – stored in the edge length matrix 

L[i,j] = distance from i to j, infinity if no edge

n If k is on the shortest path from i to j, 
then (i to k), and (k to j) is optimal too

Floyd’s algorithm

nConstructing matrix D of shortest path 
distances

nDk is the matrix of shortest paths using 
only vertices 1..k as intermediate

nDk[i,j] = min { Dk-1[i,j], Dk-1[i,k]+Dk-1[k,j] }
n Start with D0 = L
nN by N matrix N times 

– Runtime Θ(N3) ( Dijkstra NΘ((A+N) log N) )

Chained matrix multiplication

n cij = Σk aik bkj

n A – p by q matrix
n B – q by r matrix
n AB takes pqr scalar multiplication
n Example ABCD: what is the best order?
n 2x3, 3x5, 5x2, 2x7
nGreedy algorithm does not work

Chained matrix multiplication

nD[0], D[1], …, D[N] dimensions
nMatrix Mi has dimensions D[i-1] x D[i]
nOptimality 

P(i,i+s) = mini≤k≤i+s {P(i,k)+P(k+1,i+s)+D[i-
1]D[k]D[i+s]}

n Start with P(i,i+1) = D[i-1]D[i]D[i+1]
nGo to higher s


