Dynamic Programming

EECS 477
Lecture 16, 11/7/2002

Floyd's algorithm

■ Shortest paths in a directed graphs between all the pairs of vertices

- Dijkstra does paths from one seed vertex

■ Graph $\mathrm{G}=[\mathrm{N}=\{1, . ., \mathrm{N}\}, \mathrm{A}]$

- Arrows A - stored in the edge length matrix
$L[i, j]=$ distance from i to j, infinity if no edge
- If k is on the shortest path from i to j , then (i to k), and (k to j) is optimal too

Dynamic Programming

■ Solution splits into parts

- If a solution is optimal then its parts have to be optimal too

Floyd's algorithm

■ Constructing matrix D of shortest path distances

- D_{k} is the matrix of shortest paths using only vertices 1 .. k as intermediate
$\square D_{k}[i, j]=\min \left\{D_{k-1}[i, j], D_{k-1}[i, k]+D_{k-1}[k, j]\right\}$
\square Start with $D_{0}=L$
■ N by N matrix N times
- Runtime $\Theta\left(N^{3}\right)$ (Dijkstra $N \Theta((A+N) \log N)$)

Floyd's algorithm: an example

■ Graph

TSP

- Traveling Salesman Problem
- Cities 1..n
- Starts in city 1
- Flies through all the remaining cities
- Returns to city 1
- Cost from city x to city y is $d(x, y)$
- Need to minimize the total cost along the path

TSP: algorithms

- Trivial algorithm
- Each solution is a permutation
- Check all O(n!) permutations
- Dynamic programming
- Held\&Karp 1962
$\square S$ is subset of $\{2 . . n\}, x \in S$
■ Opt[S; x] = length of the cheapest path starting in city 1 visiting all the cities in $S \backslash\{x\}$ and stopping in city x

TSP: dynamic programming

■ Optimality requires
Opt[$[x\} ; x]=\mathrm{d}(1, x)$
Opt[S $; x]=\min _{y \in S\{(x)}\{O p t[S \backslash\{x\} ; y]+d(y, x)\}$
■ Optimal travel cost can be obtained as the minimum value of
Opt[\{2,3,..,n\}; y] +d(y,1)
for all y .

TSP: DP algorithm

■ Run on sets of increasing cardinality
$■\{1,2,3,4\}, \mathrm{n}=4$
Opt[\{2\}, 2] Opt[\{3\}, 3] Opt[\{4\}, 4]
Opt[\{2,3\}, 2] Opt[\{2,3\}, 3] Opt[\{2,4\},2]...
$\operatorname{Opt}[\{2,3,4\}, 2] \operatorname{Opt}[\{2,3,4\}, 3] \operatorname{Opt}[\{2,3,4\}, 4]$
■ Memory required
$\Theta\left(\mathrm{n} 2^{\mathrm{n}}\right)$
Why?

TSP: DP algorithm

- Runtime
- There are $C(n, k)$ subsets of size k
- There are k C(n, k) Opt values for each k

■ To compute Opt value for k-subset requires $\Theta(k)$ operations
$\square T(n)=\Sigma_{k} k^{2} C(n, k)=\Theta\left(n^{2} 2^{n}\right)$

- Later we'll see improved algorithm for a restricted Euclidean version of TSP

Chained matrix multiplication

- $\mathrm{c}_{\mathrm{ij}}=\Sigma_{\mathrm{k}} \mathrm{a}_{\mathrm{ik}} \mathrm{b}_{\mathrm{kj}}$
- A - p by q matrix
- B - q by r matrix
- AB takes pqr scalar multiplication
- Example $A B C D$: what is the best order?
- $2 \times 3,3 \times 5,5 \times 2,2 \times 7$

■ Greedy algorithm does not work

Chained matrix multiplication

- D[0], D[1], ..., D[N] dimensions
- Matrix M_{i} has dimensions $D[i-1] \times D[i]$
- Optimality
$P(i, i+s)=\min _{i \leq k s i+s}\{P(i, k)+P(k+1, i+s)+$ $+D[i-1] D[k] D[i+s]\}$
■ Start with $P(i, i+1)=D[i-1] D[i] D[i+1]$
■ Go to higher s

Chained multiplication

- Trivial algorithm enumerates all possibilities
$T(n)=\sum_{k=1 . . n-1} T(k) T(n-k)$
- $T(n)$ are Catalan numbers
- Number of binary trees
- Grows like $\Omega\left(4 n / n^{2}\right)$
- Each check takes $\Omega(\mathrm{n})$ operations
- Trivial runtime is in $\Omega(4 n / n)$

CMM: dynamic programming

- Fill the table Best[x, x+s]
- Start at s=0 - diagonal
- Proceed for s=1..n
\square Runtime $\sum_{s=1 . . n-1}(n-s) s=\Theta\left(n^{3}\right)$
- For level s have n-s elements each has s choices to split

