
1

Dynamic
Programming

EECS 477
Lecture 16, 11/7/2002

Dynamic Programming

Solution splits into parts
If a solution is optimal then its parts
have to be optimal too

A B

M1

M2

M3

M4

M5

d(A,B)=mink {d(A,Mk) + d(Mk,B)}

Floyd’s algorithm

Shortest paths in a directed graphs
between all the pairs of vertices
– Dijkstra does paths from one seed vertex

Graph G=[N={1,..,N} ,A]
– Arrows A – stored in the edge length matrix
L[i,j] = distance from i to j, infinity if no edge

If k is on the shortest path from i to j,
then (i to k), and (k to j) is optimal too

Floyd’s algorithm

Constructing matrix D of shortest path
distances
Dk is the matrix of shortest paths using
only vertices 1..k as intermediate
Dk[i,j] = min { Dk-1[i,j], Dk-1[i,k]+Dk-1[k,j] }
Start with D0 = L
N by N matrix N times
– Runtime Θ(N3) (Dijkstra NΘ((A+N) log N))

2

Floyd’s algorithm: an example

Graph

2

4

5
16 3

3

7

013inf
50infinf
inf703
4260

A

B C

D

A

B

C

D

A B C D

from

to

TSP

Traveling Salesman Problem
– Cities 1..n
– Starts in city 1
– Flies through all the remaining cities
– Returns to city 1
– Cost from city x to city y is d(x,y)
– Need to minimize the total cost along the

path

TSP: algorithms

Trivial algorithm
– Each solution is a permutation

• Check all O(n!) permutations
– Dynamic programming

• Held&Karp 1962

S is subset of {2..n}, x ∈ S
Opt[S; x] = length of the cheapest path
starting in city 1 visiting all the cities in
S\{x} and stopping in city x

TSP: dynamic programming

Optimality requires
Opt[{x}; x] = d(1,x)
Opt[S; x] = miny∈S\{x} {Opt[S\{x}; y]+d(y,x)}

Optimal travel cost can be obtained as
the minimum value of
Opt[{2,3,…,n}; y] + d(y,1)

for all y.

x

y

3

TSP: DP algorithm

Run on sets of increasing cardinality
{1,2,3,4}, n=4
Opt[{2}, 2] Opt[{3}, 3] Opt[{4}, 4]
Opt[{2,3}, 2] Opt[{2,3}, 3] Opt[{2,4},2]…
Opt[{2,3,4},2] Opt[{2,3,4},3] Opt[{2,3,4},4]

Memory required
Θ(n 2n)
Why?

TSP: DP algorithm

Runtime
There are C(n,k) subsets of size k
There are k C(n,k) Opt values for each k
To compute Opt value for k-subset
requires Θ(k) operations
T(n) = Σk k2 C(n,k) = Θ(n2 2n)
Later we’ll see improved algorithm for a
restricted Euclidean version of TSP

Chained matrix multiplication

cij = Σk aik bkj

A – p by q matrix
B – q by r matrix
AB takes pqr scalar multiplication
Example ABCD: what is the best order?
2x3, 3x5, 5x2, 2x7
Greedy algorithm does not work

Chained matrix multiplication

D[0], D[1], …, D[N] dimensions
Matrix Mi has dimensions D[i-1] x D[i]
Optimality
P(i,i+s) = mini≤k≤i+s {P(i,k)+P(k+1,i+s)+

+D[i-1]D[k]D[i+s]}
Start with P(i,i+1) = D[i-1]D[i]D[i+1]
Go to higher s

4

Chained multiplication

Trivial algorithm enumerates all
possibilities

T(n) = Σk=1..n-1 T(k) T(n-k)
T(n) are Catalan numbers
– Number of binary trees
– Grows like Ω(4n/n2)
– Each check takes Ω(n) operations
– Trivial runtime is in Ω(4n/n)

CMM: dynamic programming

Fill the table
Best[x, x+s]

Start at s=0 – diagonal
Proceed for s=1..n

Runtime Σs=1..n-1(n-s)s = Θ(n3)
– For level s have n-s elements each has s

choices to split

