Nim: the rules

- Two players, heap of N matches
- Player #1 must take A, 0<A<N
- After player #K took A matches, player #(3-K) must take B, 0<B<=2*A
- Player taking the last match wins
Nim: example

- Initially: 4 matches
- Represent state as a pair
 (num of matches, max number can take)
- Init: (4,3)
 - “four matches, can take at most three”
- Graph
 - Nodes: states
 - Arrows: moves (half-moves)

Nim: tree?

```
(4,3)  take 1  (3,2)  take 1  (2,2)  take 2  (1,1)
  |    |       |       |       |       |
  v    v       v       v       v
(1,1)  take 2  (2,2)  take 2  (1,1)  take 1  (0,0)
  |    |       |       |       |       |       |
  v    v       v       v       v       v
(0,0)  take 1, win (1,1)  take 1  (0,0)  take 2, win (0,0)
          |                   |                   |                   |
          v                   v                   v
          (0,0)               (0,0)               (0,0)
```
Nim: graph

Winning:
at least one move to a losing position

Losing:
all moves lead to a winning position or no moves

Nim(x,y) {
 for(k=1; k<y; ++k) {
 if(!nim(x-k, min(2k,x-k)))
 return true;
 }
 return false;
}

// use memory function for efficiency

Tree traversals

- Preorder, inorder, postorder

\[T(n) \leq \max_k \{ T(n-1-k) + T(k) + c \} \]
- Constructive induction: \(T(n) \leq a*n+b \)
 \[T(n) = \Theta(n) \]
 - Pre- & post-order for ancestor preconditioning p.293
DFS

- Depth-first search: graph traversal
 - Unmark every vertex
 - Explore:
 - Push unmarked neighbors unto the stack, marking them
 - If instead of the stack we have queue then breadth-first search (BFS) is performed
 - You’ve seen them before, we use DFS for:
 - Finding articulation points
 - Topological sorting

DFS properties

- Undirected graphs
 - Takes $\Theta(|E|+|V|)$ time
 - Builds a spanning tree T
 - Example
 - If not connected get a forest
 - Edges not in T connect a node to its ancestor (cannot cross to another branch)
 - Nodes of T indexed in pre-order (prenum)
 - Of course, depends on the starting node
A node v of a connected graph – is an articulation point if deleting it with adjacent edges makes the graph disconnected

Find them

Define $\text{highest}[v] = \text{prenum}$ of a highest node that can be reached going down the tree and at most one dashed link up

Node v is an articulation point if and only if it has at least one child x such that $\text{highest}[x] \geq \text{prenum}[v]$

- Indeed then subtree rooted at x will be separated from the rest of the graph
- Root is articulated if it has more than one child
- $\text{highest}[v] = \min(\text{prenum}[v], \text{prenum}[w], \text{highest}[u])$ over all w’s connected to v by dashed line and all children u

» (this is how we compute highest values)
Topological sorting

- DAGs: directed acyclic graphs
 - More general than trees
 - Represent partial orderings
 - Set inclusion
 - Project dependencies
 - Nodes = stages, edges = activities

Topological ordering

- Nodes indexed such that if there is an edge from x to y then x < y
 - Do DFS and post-order gives the reverse of what we need (e.g. DCBFAE) proof?
Breadth-first search (BFS)

- Queue instead of stack
- Not naturally recursive
- Trees and dashed edges look different
 - No links within branches, links across
- Useful when we have infinite search trees (e.g. implicitly specified)
- Useful when we wanna find the shortest path (solution)

Backtracking

- Exploring implicit graph
 - similar to DFS in directed graph
- Solution consists of parts
 - Choice which to add
 - Knapsack: N types of objects
 - e.g. \{(2oz, $3) (3oz, $4), (5oz, $10)\}
 - \(W = 10 \)
 - \([{},0]\) – root of the tree
 - \([{2,5},$13]\), etc.
Eight queens problem

- No threatening
- Solutions:
 - \(\binom{64}{8} \) approx. 4 billions
 - Vector of 8 numbers \(8^8 \) approx 16 millions
 - Permutations \(8! = 40,320 \)
 - Backtracking
 - DFS: tree of k-promising vectors (size 2057)
 - One queen at a time
 - Check right away – only the lastly added queen

Branch and bound

- Looking for an optimal solution
 - Use bounds to prune the search tree
 - DFS or BFS
 - Example: assignment
 - Matrix Cost\([x,y]\]
 - Minimize \(\sum_x \text{Cost}[x, a[x]] \) where \(a[x] \) is the assignment and \(a[x]! = a[y] \) when \(x! = y \)
 - Assign jobs with least costs one per worker