# Graphs \& Games 

EECS 477
Lecture 17, 11/12/2002

Nim: the rules

- Two players, heap of N matches
- Player \#1 must take A, 0<A<N
- After player \#K took A matches, player \#(3-K) must take $B, 0<B<=2 * A$
- Player taking the last match wins



## Nim: example

Initially: 4 matches

- Represent state as a pair (num of matches, max number can take)
- Init: $(4,3)$
- "four matches, can take at most three"
- Graph
- Nodes: states
- Arrows: moves (half-moves)


## Nim: tree?



## Nim: graph



## Tree traversals

- Preorder, inorder, postorder

$T(n) \leq \max _{k}\{T(n-1-k)+T(k)+c\}$
- Constructive induction: $T(n) \leq a * n+b$
$T(n)=\Theta(n)$
- Pre- \& post-order for ancestor preconditioning p. 293


## DFS

Depth-first search: graph traversal

- Unmark every vertex
- Explore:
- Push unmarked neighbors unto the stack, marking them
- If instead of the stack we have queue then breadthfirst search (BFS) is performed
- You've seen them before, we use DFS for:
- Finding articulation points
- Topological sorting


## DFS properties

■ Undirected graphs

- Takes $\Theta(|E|+|V|)$ time
- Builds a spanning tree $T$
- Example
- If not connected get a forest
- Edges not in T connect a node to its ancestor (cannot cross to another branch)
- Nodes of T indexed in pre-order (prenum)
- Of course, depends on the starting node


## Articulation points

- A node $v$ of a connected graph
- is an articulation point if deleting it with adjacent edges makes the graph disconnected
Find them


Define highest[v] = prenum of a highest node that can be reached going down the tree and at most one dashed link up

## Articulation points

- Node $v$ is an articulation point
if and only if it has at least one child $x$ such that highest[x]>=prenum[v]
- Indeed then subtree rooted at $x$ will be separated from the rest of the graph
- Root is articulated if it has more
 than one child
- highest[v] $=\min (\operatorname{prenum}[v]$, prenum[w], highest[u]) over all w's connected to v by dashed line and all children u
" (this is how we compute highest values)


## Topological sorting

DAGs: directed acyclic graphs

- More general than trees
- Represent partial orderings
- Set inclusion
- Project dependencies



## Topological sorting

- Topological ordering
- Nodes indexed such that if there is an edge from $x$ to $y$ then $x<y$

- Do DFS and post-order gives the reverse of what we need (e.g.DCBFAE) proof?


## Breadth-first search (BFS)

■ Queue instead of stack

- Not naturally recursive
- Trees and dashed edges look different
- No links within branches, links across

■ Useful when we have infinite search trees (e.g. implicitly specified)
■ Useful when we wanna find the shortest path (solution)

## Backtracking

■ Exploring implicit graph

- similar to DFS in directed graph

Solution consists of parts

- Choice which to add
- Knapsack: N types of objects
- e.g. $\{(2 \mathrm{oz}, \$ 3)(3 \mathrm{oz}, \$ 4),(5 \mathrm{oz}, \$ 10)\}$
- $\mathrm{W}=10$
- [\{\},0] - root of the tree
- [\{2,5\},\$13], etc.


## Eight queens problem

No threatening
$\square$ Solutions:

- C(64,8) approx. 4 billions
- Vector of 8 numbers $8^{8}$ approx 16 millions
- Permutations $8!=40,320$
- Backtracking
- DFS: tree of k-promising vectors (size 2057)
- One queen at a time
- Check right away - only the lastly added queen


## Branch and bound

■ Looking for an optimal solution

- Use bounds to prune the search tree
- DFS or BFS
- Example: assignment
- Matrix Cost[x,y]
- Minimize $\sum_{x} \operatorname{Cost}[x, a[x]]$ where $a[x]$ is the assignment and $a[x]!=a[y]$ when $x!=y$
- Assign jobs with least costs one per worker

