Graphs \& Games

EECS 477
Lecture 18, 11/14/2002

DFS properties

■ Undirected graphs

- Takes $\Theta(|E|+|V|)$ time
- Builds a spanning tree T
- Example
- If not connected get a forest
- Edges not in T connect a node to its ancestor (cannot cross to another branch)
- Nodes of T indexed in pre-order (prenum)
- Of course, depends on the starting node

Articulation points

- A node v of a connected graph
- is an articulation point if deleting it with adjacent edges makes the graph disconnected
Find them

Define highest[v] = prenum of a highest node that can be reached going down the tree and at most one dashed link up

Articulation points

- (non-root) Node v is an articulation point if and only if it has at least one child x such that highest[x]>=prenum[y]
- Indeed then subtree rooted at x will be separated from the rest of the graph
- Root is articulated if it has more
 than one child
- highest[v$]=\min ($ prenum $[\mathrm{v}]$, prenum[w$]$, highest[u]) over all w's connected to v by dashed line and all children u
" (this is how we compute highest values)

Backtracking

■ Exploring implicit graph

- similar to DFS in directed graph
- Solution consists of parts
- Choice which to add
- Knapsack: N types of objects
-e.g. \{(2oz, \$3) (3oz, \$4), (5oz, \$10)\}
- $\mathrm{W}=10$
- [$\}, 0]$ - root of the tree
- [\{2,5\},\$13], etc.

Knapsack $\{(20 z, \$ 3)(30 z, \$ 7),(50 z, \$ 11)\}, w=10$

Eight queens problem

No threatening

- Solutions:

- C(64,8) approx. 4 billions
- Vector of 8 numbers 8^{8} approx 16 millions
- Permutations 8! $=40,320$
- Backtracking
- DFS: tree of k-promising vectors (size 2057)
- One queen at a time
- Check right away - only the lastly added queen

Branch and bound

- Looking for an optimal solution
- Use bounds to prune the search tree
- DFS or BFS
- Example: assignment
- Matrix Cost[x,y]
- Minimize $\Sigma_{\mathrm{x}} \operatorname{Cost}[\mathrm{x}, \mathrm{a}[\mathrm{x}]]$ where $\mathrm{a}[\mathrm{x}]$ is the assignment and $a[x]!=a[y]$ when $x!=y$
- Assign jobs with least costs one per worker

Assignment

■ Branch and bound
$-\operatorname{minimize} \Sigma_{\mathrm{x}} \operatorname{Cost}[\mathrm{x}, \mathrm{a}[\mathrm{x}]]$
■ Cost: diagonal, first A, then B,...

	job1	job2	job3	job4
A	8	12	3	10
B	11	7	8	9
C	2	14	9	4
D	12	5	12	7

TSP

- Branch and bound
- Need a lower bound

- How good can a tour be?
- (sum of min edge pair costs) / 2
$\mathrm{a}: 3+3, \mathrm{~b}: 3+5, \mathrm{c}: 3+1, \mathrm{~d}: 4+1$.
Cost $>=(6+8+4+5) / 2=23 / 2=11.5$
Cost[abdca] = 12. That must be optimal!
- Exclude/include edges one by one
- That gives constraints

Minimax principle

- Two player games
- Games with values
- Win/lose money
- Chess/checkers: evaluation function
- Player Max and player Min
- Tree of variants: alternate min and max
- Start from the leaves
- Alpha-beta pruning
- Not covered here

