LP and FFT

EECS 477
Lecture 19, 11/19/2002

A Linear Programming Example

- Politician trying to win a election
- 3 Types of areas: urban, suburban, rural
- Primary issues:
build roads, gun control, farm subsidies
- To win, need:

50,000 urban votes
100,000 suburban votes
25,000 rural votes.

Money Spent on Campaign Ads

Policy	Urban	Suburban	Rural
Build Roads	-2	5	3
Gun Control	8	2	-5
Farm Subsidies	0	0	10
Votes Req.	50	100	25

Shown: 1000s of votes won by spending $\$ 1000$ an ads -Goal: spend min \$\$ and win the elections

Formalization

Introduce variables:
$x_{1}=\$ \$$ spent on building roads
$x_{2}=\$ \$$ spent on gun control
$x_{3}=\$ \$$ spent on farm subsidies
Express constraints through equations:
$-2 x_{1}+8 x_{2}+0 x_{3} \geq 50$
$5 x_{1}+2 x_{2}+0 x_{3} \geq 100$
$3 x_{1}-5 x_{2}+10 x_{3} \geq 25$

Finally...

- Minimize the function:

$$
x_{1}+x_{2}+x_{3}
$$

- Subject to constraints

$$
-2 x_{1}+8 x_{2}+0 x_{3} \geq 50
$$

$$
5 x_{1}+2 x_{2}+0 x_{3} \geq 100
$$

$$
3 x_{1}-5 x_{2}+10 x_{3} \geq 25
$$

$$
\text { and } x_{1}, x_{2}, x_{3} \geq 0
$$

(Any) solution of this linear program is an optimal strategy for the politician

Formal Definitions

- Linear Function:
$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}$
where $x_{1} \ldots x_{n}$ are variables and $a_{1} \ldots a_{n}$ are constants.
- Linear Equality:
$f\left(x_{1}, \ldots, x_{n}\right)=b$ where b is a real number.
- Linear Inequalities:
$f\left(x_{1}, \ldots, x_{n}\right) \leq b$ and
$f\left(x_{1}, \ldots, x_{n}\right) \geq b$

More Definitions...

- Linear Programming Problem:
- Minimizing or maximizing linear function

$$
\text { - E.g., } x_{1}+x_{2}+x_{3} \quad \text { (Objective Function) }
$$

- Subject to a finite set of linear constraints ($=, \geq, \leq$)
- Three cases
- $\operatorname{Max} f(\ldots)$
- Min $f(\ldots)$: can turn into Max $-f(\ldots)$
- (Pure) constraint satisfaction (no objective function)
- E.g., $f(x)=0 x$
- Standard Form: max subject to linear inequalities
- Slack Form: max subject to linear equalities

More Definitions (2)

- Feasible Solution
- Values $x_{1}, x_{2} \ldots x_{n}$ that satisfy all constraints
\square Feasible Region (in the n-dim space)
- Graph all the constraint equations
- Their intersection is the feasible region

Objective Value: value of the objective function at a particular point in the feasible region.

Standard Form

- n real numbers $c_{1} \ldots c_{n}$; m real numbers $b_{1}, b_{2}, \ldots b_{m}$; and $m n$ real numbers $a_{i j}$ for $i=1 \ldots m$ and $j=1 \ldots n$.
- Find $x_{1} \ldots x_{n}$ that maximize $\sum c_{j} x_{j}, j=1 \ldots n$ (objective function) subject to

$$
\begin{align*}
& \quad \mathrm{a}_{i j} x_{j} \leq b_{i} \text { for } i=1 \ldots m \text { and } j=1 \ldots n(\mathrm{Eq} 1) \\
& \quad x_{j} \geq 0 \text { for } j=1 \ldots n \tag{Eq2}\\
& \quad \text { Eq } 1 \text { and Eq } 2 \text { are constraints } \\
& \text { Eq } 2 \text { : non negativity constraints }
\end{align*}
$$

Summary of Standard Form

$\square a_{i j}=$ elements of $m \times n$ matrix A
$\square b_{i}=m$-dim vector b

- $c_{j}=n$-dim vector c
$\square x_{i}=n$-dim vector x
\square Linear Program is a tuple (A, b, c), interpreted as
- Max $\quad c^{T} x$
- Subject to $A x \leq b$ $x \geq 0$

Example

$$
\begin{aligned}
& \square \max \left(x_{1}-2 x_{2}\right) \\
& -x_{1}>=0, x_{2}>=0 \\
& -x_{1}-3 x_{2}<=1 \\
& -x_{1}-x_{2}<=3
\end{aligned}
$$

Draw a picture
Find the solution via simplex method

Scheduling and LP

- m=1..M machines
- j=1..J jobs
$\square \mathrm{p}[\mathrm{m}, \mathrm{j}]$ - processing time
$\mathrm{x}[\mathrm{m}, \mathrm{j}]=0$ or 1 -- assignment
$\Sigma_{m=1 . . \mathrm{M}} \times[\mathrm{m}, \mathrm{j}]=1, \quad \mathrm{j}=1 . . \mathrm{J}$
$\Sigma_{\mathrm{j}=1 . . \mathrm{J}} \times[\mathrm{m}, \mathrm{j}] \mathrm{p}[\mathrm{m}, \mathrm{j}]<=\mathrm{t}, \quad \mathrm{m}=1 . . \mathrm{M}$
$\min t$
LP Relaxation $x[m, j]=0$

Integer programming

Maximize $17 x+12 y$

- Subject to
- $10 x+7 y<=40$
- $x+y<=5$
- $x, y>=0$, integers

- from Vanderbei '2001
- Optimal solution (x,y)=(1.67,3.33)
- Rounding $(2,3)$ infeasible, closest feasible $(1,3)$
- Can use Branch and Bound for exact solution

DFT

- w := exp $(-2 \pi \mathrm{i} / \mathrm{N})$
- N-th roots of unity $\left(w^{k}\right)^{N}=1$
- Complex number $\exp (i u)=\cos (u)+i \sin (u)$
- Taking squares get $n / 2$ roots of unity
- Fourier transform: what applications
$a^{\wedge}[k]=\Sigma_{j=0 . . N-1} a[j] w^{k j}$, for all $k=0 . . N-1$
- Simple algorithm

N times N -term sums $=\Theta\left(\mathrm{N}^{2}\right)$

FFT

Use the fact that
$\Sigma_{\mathrm{j}=0 . \mathrm{N}-1} \mathrm{a}[\mathrm{j}] \mathrm{x}^{\mathrm{j}}=\sum_{\mathrm{j}=0 . \mathrm{N} / 2-1} \mathrm{a}\left[2^{*} \mathrm{j}\right] \mathrm{x}^{2 \mathrm{j}}+\mathrm{x} \Sigma_{\mathrm{j}=0 . \mathrm{N} / 2-1} \mathrm{a}\left[2^{*} \mathrm{j}+1\right] \mathrm{x}^{2 \mathrm{j}}$

- Recursive procedure

```
fft(a[0..n-1]) {
            ye = fft((a[0],a[2],..,a[n-2]));
            yo = fft((a[1],a[3],..,a[n-1]));
            for(k=0; k<n/2; ++k) {
                y[k] = ye[k] + w^k yo[k];
                y[k+n/2] = ye[k] - w^k yo[k];
            }
            return y;
}
```

FFT

- $\mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\Theta(\mathrm{N})$
- Case ? of the Master Theorem
- Fast algorithm
$\mathrm{T}(\mathrm{N})=\Theta(\mathrm{N} \log \mathrm{N})$
[0,1,2,3,4,5,6,7,8]
$[0,2,4,6] \quad[1,3,5,7]$
$[0,4] \quad[2,6] \quad[1,5] \quad[3,7]$
[0] [4] [2] [6] [1] [5] [3] [7]

