Computational Complexity

EECS 477
Lecture 20, 11/21/2002

Today

Finish up with Fast Fourier Transform
■ Start computational complexity

- Chapter 12
- Today everything before P and NP and such...
- P and NP and such next week
- We do not cover chapter 10 and 11 at all
- No probabilistic algorithms
- No parallel algorithms

DFT

- w := $\exp (-2 \pi \mathrm{i} / \mathrm{N})$
- N-th roots of unity $\left(w^{k}\right)^{N}=1$
- Complex number $\exp (i u)=\cos (u)+i \sin (u)$
- Taking squares get $\mathrm{n} / 2$ roots of unity
- Fourier transform: what applications
$\mathrm{a}^{\wedge}[k]=\Sigma_{j=0 . . N-1} a[j] w^{k j}$, for all $k=0 . . N-1$
- Simple algorithm

N times N -term sums $=\Theta\left(\mathrm{N}^{2}\right)$

FFT

Use the fact that
$\Sigma_{\mathrm{j}=0 . \mathrm{N}-1} \mathrm{a}[\mathrm{j}] \mathrm{x}^{\mathrm{j}}=\Sigma_{\mathrm{j}=0 . \mathrm{N} / 2-1} \mathrm{a}\left[2^{\star} \mathrm{j}\right] \mathrm{x}^{2 \mathrm{j}}+\mathrm{x} \Sigma_{\mathrm{j}=0 . \mathrm{N} / 2-1} \mathrm{a}\left[2^{\star} \mathrm{j}+1\right] \mathrm{x}^{2 \mathrm{j}}$
Recursive procedure

```
        fft(a[0..n-1]) {
```

 ye \(=\mathrm{fft}((\mathrm{a}[0], a[2], \ldots, a[\mathrm{n}-2]))\);
 yo \(=\mathrm{fft}((\mathrm{a}[1], a[3], \ldots, a[\mathrm{n}-1]))\);
 for (\(k=0\); \(k<n / 2 ;++k)\) \{
 \(\mathrm{y}[\mathrm{k}]=\mathrm{ye}[\mathrm{k}]+\mathrm{w}^{\wedge} \mathrm{k}\) yo[k];
 \(\mathrm{y}\left[\mathrm{k}+\mathrm{n} / 2 \mathrm{C}=\mathrm{ye}[\mathrm{k}]-\mathrm{w}^{\wedge} \mathrm{k}\right.\) yo[k];
 \}
 return y;
 \}

FFT

$\square \mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\Theta(\mathrm{N})$

- Case 2 of the Master Theorem
\square Fast algorithm
$\mathrm{T}(\mathrm{N})=\Theta(\mathrm{N} \log \mathrm{N})$
[0,1,2,3,4,5,6,7,8]
[0,2,4,6] [1,3,5,7]
$[0,4] \quad[2,6] \quad[1,5] \quad[3,7]$
[0] [4] [2] [6] [1] [5] [3] [7]

Information-theoretic arguments

■ Game of five questions

- A person chooses an integer $1 . .32$
- We can always guess with five yes-no questions what the number is.
- Prove it!
- Can we do better than this?
- No, when our friend cheats
- Prove it!
- Cheating = giving a counter-example

Game of two questions

- Decision tree
- All possible data as leaves of the tree
- Outputs = verdicts

Trees of height two would have no more than four leaves so we cannot use less than three questions.

Worst-case analysis

Average case analysis

- Runtime >= \# of questions on a path
- Average height of $\mathrm{T}:=$ average depth of all the leaves in that tree
- Any binary tree with k leaves has an average height of at least log k $h(k):=$ "the smallest possible sum of leaf depths" Need: $h(k)>=k \log k$
$h(k)=\min _{0<i<k}[h(i)+h(k-i)+k], k>1$
$\square h(0)=0, h(1)=0$

Sorting complexity

- List of N elements
- Number of leaves
- N! permutations
- Tree with N! leaves has minimal depth of $\log (N!)=\log 1+\log 2+. .+\log N=\Theta(N \log N)$
- See midterm solutions
- Minimal average tree height is $\Theta(N \log N)$
- Quicksort has optimal performance
- Insertion sort, heapsort decision tree (book)

Adversary arguments (12.3)

Finding maximum

- O(N) easy
- What about a lower bound?
- Information-theoretic argument gives $\log \mathrm{N}$
- At least ($\mathrm{N}-1$) comparisons via adversary argument
- Smaller in comparison loses a comparison
- If less then there two that did not lose
- By contradiction

Graph connectivity

- Graph with N vertices
- Is it connected?
- N^{2} tests is enough
- What is the lower bound?
- Information-theoretic gives lower bound of 1 :
- Daemon splits graph into two equal parts
- There are $\Omega\left(\mathrm{N}^{2}\right)$ edges in between these
- Have to test all of them

Median

Adversary argument for finding median

- We know an algorithm in $\mathrm{O}(\mathrm{N})$
- Proof that less than $3(\mathrm{~N}-1) / 2$ comparisons is not enough
- Daemon and an array T[1..N], N is odd - Assigns values
$-1 . . \mathrm{N}$ are low
$-3 \mathrm{~N}+1 . .4 \mathrm{~N}$ are high
- Follow the rules on the next slide
- T is uninitialized at first

Median II

- Upon comparison $\mathrm{T}[\mathrm{x}]$ and $\mathrm{T}[\mathrm{y}]$
- If both uninitialized set $T[x]=x, T[y]=3 N+y$
- If one of $T[x]$ and $T[y]$ uninitialized
- If it's the last uninitialized element set it to 2 N
- If $T[x]$ is low set $T[y]$ to high $3 N+y$, balance
- If both initialized
- Low-low, low-median -- lower lost a comparison
- High-high, med-high - higher lost a comparison ($\mathrm{N}-1$)/2 to init, less than $\mathrm{N}-1$ is left for losing at least one non-median that has not lost

Linear reductions

- A is linearly reducible to $B(A<=B)$
if the existence of a $\mathrm{O}(\mathrm{t}(\mathrm{n}))$ algorithm for B implies the existence of $\mathrm{O}(\mathrm{t}(\mathrm{n})$) algorithm for A
When both ways we get linear equivalence
- Ex: SQR and MULT
- $x^{2}=x^{*} x$
- $x^{*} y=\left((x+y)^{2}-(x+y)^{2}\right) / 4$

Smoothness matters: see the book $\mathrm{f}(\mathrm{bN})=\mathrm{O}(\mathrm{f}(\mathrm{N}))$, for all integer $b>=2$

Decision problems

- TSP
- Find the tour of the minumum cost
- Decision problem
- For K , is there a tour of cost <=K
- P - class of decision problems that can be solved by a polynomial-time algorithm
■ NP - non-deterministic polynomial time
- Given a solution, it can be checked in polynomial time (like given a tour, check?)

