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Computational 
Complexity

EECS 477
Lecture 20, 11/21/2002

Today

Finish up with Fast Fourier Transform
Start computational complexity
– Chapter 12

• Today everything before P and NP and such…
• P and NP and such next week

– We do not cover chapter 10 and 11 at all
• No probabilistic algorithms
• No parallel algorithms
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DFT

w := exp(-2πi/N)
– N-th roots of unity  (wk)N = 1
– Complex number exp(iu) = cos(u) + i sin(u)
– Taking squares get n/2 roots of unity
– Fourier transform: what applications
a^[k] = Σj=0..N-1 a[j] wkj, for all k=0..N-1

Simple algorithm
N times N-term sums = Θ(N2)

FFT

Use the fact that
Σj=0..N-1 a[j] xj = Σj=0..N/2-1 a[2*j] x2j + x Σj=0..N/2-1 a[2*j+1] x2j

Recursive procedure
fft(a[0..n-1]) {

ye = fft((a[0],a[2],..,a[n-2]));
yo = fft((a[1],a[3],..,a[n-1]));
for(k=0; k<n/2; ++k) {    

y[k] = ye[k] + w^k yo[k];
y[k+n/2] = ye[k] - w^k yo[k];

}
return y;

}
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FFT

T(N) = 2 T(N/2) + Θ(N)
– Case 2 of the Master Theorem

Fast algorithm
T(N) = Θ(N log N)
[0,1,2,3,4,5,6,7,8]

[0,2,4,6]       [1,3,5,7]
[0,4]   [2,6] [1,5] [3,7]

[0] [4] [2] [6] [1] [5] [3] [7]

Information-theoretic arguments

Game of five questions
– A person chooses an integer 1..32

• We can always guess with five yes-no 
questions what the number is.

• Prove it!
– Can we do better than this?

• No, when our friend cheats
• Prove it!

– Cheating = giving a counter-example
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Game of two questions

Decision tree
– All possible data as leaves of the tree

• Outputs = verdicts

N<4

N<3 N<6

N<2 3 N<5 6 

1 2 4 5 

yes no
Trees of height two 
would have no more
than four leaves so we 
cannot use less than
three questions.

Worst-case analysis

Average case analysis

Runtime >= # of questions on a path
– Average height of T := average depth of all 

the leaves in that tree
Any binary tree with k leaves has an 
average height of at least log k
h(k) := “the smallest possible sum of leaf 

depths”      Need: h(k) >= k log k
h(k) = min0<i<k [ h(i) + h(k-i) + k ], k>1
h(0) = 0, h(1) = 0 Proof by induction
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Sorting complexity

List of N elements
– Number of leaves

• N! permutations
– Tree with N! leaves has minimal depth of 

log(N!) = log 1+log 2+..+log N = Θ(N log N)
• See midterm solutions

– Minimal average tree height is Θ(N log N)
• Quicksort has optimal performance

– Insertion sort, heapsort decision tree  (book)

Adversary arguments (12.3)

Finding maximum
– O(N) easy
– What about a lower bound?

• Information-theoretic argument gives log N
– At least (N-1) comparisons via adversary 

argument
• Smaller in comparison loses a comparison
• If less then there two that did not lose 

– By contradiction
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Graph connectivity

Graph with N vertices
– Is it connected?

• N2 tests is enough
• What is the lower bound?
• Information-theoretic gives lower bound of 1 

– Daemon splits graph into two equal parts
– There are Ω(N2) edges in between these

• Have to test all of them

Median

Adversary argument for finding median
– We know an algorithm in O(N)
– Proof that less than 3(N-1)/2 comparisons 

is not enough
– Daemon and an array T[1..N], N is odd

• Assigns values
– 1..N are low
– 3N+1..4N are high
– Follow the rules on the next slide
– T is uninitialized at first
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Median II

Upon comparison T[x] and T[y]
– If both uninitialized set T[x]=x, T[y]=3N+y
– If one of T[x] and T[y] uninitialized

• If it’s the last uninitialized element set it to 2N
• If T[x] is low set T[y] to high 3N+y, balance

– If both initialized
• Low-low, low-median -- lower lost a comparison
• High-high, med-high – higher lost a comparison
(N-1)/2 to init, less than N-1 is left for losing

at least one non-median that has not lost

Linear reductions

A is linearly reducible to B (A<=B)
if the existence of a O(t(n)) algorithm for 
B implies the existence of O(t(n)) 
algorithm for A
When both ways we get linear 
equivalence
– Ex: SQR and MULT

• x2 = x*x
• x*y = ((x+y)2 - (x+y)2)/4

Smoothness matters:
see the book
f(bN) = O(f(N)), 
for all integer b>=2
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Decision problems

TSP
– Find the tour of the minumum cost

Decision problem
– For K, is there a tour of cost <=K

P – class of decision problems that can be 
solved by a polynomial-time algorithm
NP – non-deterministic polynomial time
– Given a solution, it can be checked in polynomial 

time (like given a tour, check?)


