Today

- Finish up with Fast Fourier Transform
- Start computational complexity
 - Chapter 12
 - Today everything before P and NP and such…
 - P and NP and such next week
 - We do not cover chapter 10 and 11 at all
 - No probabilistic algorithms
 - No parallel algorithms
DFT

- $w := \exp(-2\pi i/N)$
 - N-th roots of unity $(w^k)^N = 1$
 - Complex number $\exp(iu) = \cos(u) + i \sin(u)$
 - Taking squares get $n/2$ roots of unity
 - Fourier transform: what applications

 $a^*[k] = \Sigma_{j=0..N-1} a[j] w^{kj}$, for all $k=0..N-1$

- Simple algorithm

 N times N-term sums = $\Theta(N^2)$

FFT

- Use the fact that

 $\Sigma_{j=0..N-1} a[j] x^j = \Sigma_{j=0..N/2-1} a[2^j] x^{2^j} + x \Sigma_{j=0..N/2-1} a[2^j+1] x^{2^j}$

- Recursive procedure

  ```c
  fft(a[0..n-1]) {
    ye = fft((a[0],a[2],..,a[n-2]));
    yo = fft((a[1],a[3],..,a[n-1]));
    for(k=0; k<n/2; ++k) {
      y[k] = ye[k] + w^k yo[k];
      y[k+n/2] = ye[k] - w^k yo[k];
    }
    return y;
  }
  ```
FFT

- $T(N) = 2 \, T(N/2) + \Theta(N)$
 - Case 2 of the Master Theorem

- Fast algorithm
 $T(N) = \Theta(N \log N)$

Information-theoretic arguments

- Game of five questions
 - A person chooses an integer 1..32
 - We can always guess with five yes-no questions what the number is.
 - Prove it!
 - Can we do better than this?
 - No, when our friend cheats
 - Prove it!
 - Cheating = giving a counter-example
Game of two questions

- Decision tree
 - All possible data as leaves of the tree
 - Outputs = verdicts

Trees of height two would have no more than four leaves so we cannot use less than three questions.

Worst-case analysis

Average case analysis

- Runtime >= # of questions on a path
 - Average height of T := average depth of all the leaves in that tree

- Any binary tree with \(k \) leaves has an average height of at least \(\log k \)
 - \(h(k) := \text{“the smallest possible sum of leaf depths”} \)
 - Need: \(h(k) \geq k \log k \)

- \(h(k) = \min_{0 < i < k} [h(i) + h(k-i) + k], k > 1 \)
- \(h(0) = 0, h(1) = 0 \)
 Proof by induction
Sorting complexity

- List of N elements
 - Number of leaves
 - N! permutations
 - Tree with N! leaves has minimal depth of
 \[\log(N!) = \sum_{i=1}^{N} \log i = \Theta(N \log N) \]
 - See midterm solutions
 - Minimal average tree height is \(\Theta(N \log N) \)
 - Quicksort has optimal performance
 - Insertion sort, heapsort decision tree (book)

Adversary arguments (12.3)

- Finding maximum
 - \(O(N) \) easy
 - What about a lower bound?
 - Information-theoretic argument gives \(\log N \)
 - At least (N-1) comparisons via adversary argument
 - Smaller in comparison loses a comparison
 - If less then there two that did not lose
 - By contradiction
Graph connectivity

- Graph with N vertices
 - Is it connected?
 • N^2 tests is enough
 • What is the lower bound?
 • Information-theoretic gives lower bound of 1
 - Daemon splits graph into two equal parts
 - There are $\Omega(N^2)$ edges in between these
 • Have to test all of them

Median

- Adversary argument for finding median
 - We know an algorithm in $O(N)$
 - Proof that less than $3(N-1)/2$ comparisons is not enough
 - Daemon and an array $T[1..N]$, N is odd
 • Assigns values
 - 1..N are low
 - 3N+1..4N are high
 - Follow the rules on the next slide
 - T is uninitialized at first
Median II

- Upon comparison $T[x]$ and $T[y]$
 - If both uninitialized set $T[x]=x$, $T[y]=3N+y$
 - If one of $T[x]$ and $T[y]$ uninitialized
 - If it’s the last uninitialized element set it to $2N$
 - If $T[x]$ is low set $T[y]$ to high $3N+y$, balance
 - If both initialized
 - Low-low, low-median -- lower lost a comparison
 - High-high, med-high -- higher lost a comparison
 - $(N-1)/2$ to init, less than $N-1$ is left for losing
 - at least one non-median that has not lost

Linear reductions

- A is linearly reducible to B ($A \leq B$)
 - if the existence of a $O(t(n))$ algorithm for B implies the existence of $O(t(n))$ algorithm for A
- When both ways we get linear equivalence
 - Ex: SQR and MULT
 - $x^2 = x^*x$
 - $x^*y = ((x+y)^2 - (x+y)^2)/4$

Smoothness matters: see the book

$f(bN) = O(f(N))$, for all integer $b \geq 2$
Decision problems

- TSP
 - Find the tour of the minimum cost
- Decision problem
 - For K, is there a tour of cost \(\leq K \)
- P – class of decision problems that can be solved by a polynomial-time algorithm
- NP – non-deterministic polynomial time
 - Given a solution, it can be checked in polynomial time (like given a tour, check?)