Complexity, P and NP

EECS 477
Lecture 21, 11/26/2002

Last week

- Lower bound arguments
- Information theoretic (12.2)
- Decision trees (sorting)
- Adversary arguments (12.3)
- Maximum of an array
- Graph connectivity
- Median

Linear reductions

$\square A$ is linearly reducible to $B(A<=B)$ if the existence of a $\mathrm{O}(\mathrm{t}(\mathrm{n})$) algorithm for B implies the existence of $O(t(n))$ algorithm for A

- When both ways we get linear equivalence
- Ex: SQR and MULT
- $x^{2}=x^{*} x$
- $x^{*} y=\left((x+y)^{2}-(x+y)^{2}\right) / 4$

Smoothness matters: see the book $\mathrm{f}(\mathrm{bN})=\mathrm{O}(\mathrm{f}(\mathrm{N}))$, for all integer $b>=2$

Polynomial vs non-polynomial

- Linear reduction works for polynomial time algorithms
Polynomial = efficient
- Distinguish efficient from the rest
- Allow polynomial reduction
- Polynomial number of polynomial-time operations takes polynomial time
- Versus exponential time

Decision problems

- Technically easier to handle decision problems
- Answer is "yes" or "no"
- Example:
- TSP
- Find the tour of the minumum cost
- TSPD: decision version
- For K , is there a tour of cost $<=\mathrm{K}$
- We can verify given an example

Hamiltonian cycles

- Hamiltonian path
- Goes through every node once
- Hamiltonian cycle
- HAM
- Find Hamiltonian path if one exists
- HAMD
- Is a given graph Hamiltonian?
- Do not have to present the path

Complexity classes

■ Two classes
-P

- The class of decision problems that can be solved by a polynomial-time algorithm
- NP
- The class of decision problems that admit a proof system $F \subseteq X \times Q$, poly-time algorithm A
1: $(\forall x \in X)(\exists q \in Q)$ s.t. $(x, q) \in F$ and $\# q \leq p(\# x)$
2: $(\forall(x, q))$ algorithm A can verify whether $(x, q) \in F$
- Q - certificates (there are q for for "yes" instances x only), X - "yes" instances

In other words,

$\square \mathrm{P}$ - class of decision problems that can be solved by a polynomial-time algorithm
■ NP - non-deterministic polynomial time

- Given a solution, it can be checked in polynomial time
- given a cycle/tour - check?
- Composite number: given a factor easy to check (but to find one?)

Theorems, conjectures

\square Theorem: $\mathrm{P} \subseteq \mathrm{NP}$

- If we can solve a problem then we can surely check it
- The central open question:

Is $\mathrm{P}=\mathrm{NP}$ or not?

- Conjecture: $\mathrm{P} \neq \mathrm{NP}$
- Look at the hardest problems in NP
- As hard as any other problem in NP

Polynomial reduction

Polynomial reductions

- Two problems A and B
$\square \mathrm{A} \leq^{\mathrm{p}} \mathrm{B}$:
- A is polynomially reducible to B
- There is an algorithm for solving A in time that would be polynomial if we could solve arbitrary instances of B in unit time
- If both ways then they are polynomially equivalent: $\mathrm{A} \equiv^{\mathrm{p}} \mathrm{B}$
- Transitive: if $A \leq^{p} B$ and $B \leq^{p} C$ then $A \leq^{p} C$

Example

■ HAM \equiv^{p} HAMD

- HAMD $\leq \mathrm{p}$ HAM
- Trivial: if HAMalgo finds a cycle then yes
- HAM $\leq \mathrm{p}$ HAMD
- First check if HAMDalgo gives yes for the original graph
- Start considering edges for removal one by one
- Apply HAMDalgo to the remaining
- If still Hamiltonian without an edge then remove it
- Otherwise remove the edge and keep going
- Stop when a cycle is left, return it

Reduction function

- Two decision problems $\mathrm{X} \subseteq 1$ and $\mathrm{Y} \subseteq J$
\square F: map I \rightarrow J
such that $F(x) \in Y$ if and only if $x \in X$
Theorem: If F is computable in polynomial time then $X \leq p y$
- bool DecideX(x) \{ $y=F(x) ;$ if(DecideY(y)) return true; else return false;
\}

Example

HAMD $\leq \mathrm{p}$ TSPD

- Given a graph $G=(N, A)$, need to see if it is Hamiltonian
- Define $F(G)$ be the TSPD instance with a complete graph ($\mathrm{N}, \mathrm{N} \times \mathrm{N}$)
- Cost $=1$ if the edge in A and 2 otherwise
- TSPD bound being N
- If TSPD yes then that is a Hamiltonian cycle
- If TSPD no then no Hamiltonian cycle

NP-completeness

- Decision problem X is NP-complete

1. X is in $N P$
2. $Y \leq p X$ for every problem Y in $N P$

- X is polynomially harder than any other NP problem
- If we know that X is NP-complete and $X \leq^{p} Z$ then Z is NP-complete
- If we could only find one such X

SAT: satisfiability

- Given a boolean formula
- Is it satisfiable?
- is there an assignment of values to variables that will make it true?
- e.g. $(p \wedge q) \Rightarrow(p \vee q)$ is satisfiable via ($p=q=$ true)
- No efficient algorithm known
- CNF: conjunctive normal form
- e.g. $(p+q+\neg r)(p+\neg q+\neg t)(\neg p+q+\neg r+t) p$
- SAT-CNF satisfiability for boolean expressions in CNF form

Cook's theorem

■ For any NP problem Y, Y \leq^{p} SAT-CNF

- Proof:
- Any decision problem in NP has a decision algorithm A_{y} that checks a certificate
- A_{y} is given by a non-deterministic one-tape Turing machine program
- Can construct polynomial size boolean CNF formula from that program
- "Formula is satisfiable" = "Instance y is in Y"
- No more details here

Some NP-complete problems

SAT

- 3SAT: clauses have three variables
- 3DM: 3D matching
- HAMD: hamiltonian circuit
- PARTITION: set A and $s: A \rightarrow Z^{+}$
- Partition A into two equally sized parts

CLIQUE: clique of size J

- VERTEX COVER: of size K
- K-COL: graph colorability with K colors

NP-hard

$\square \mathrm{X}$ is NP-hard

- if there is an NP-complete problem Y that can be polynomially reduced to X
- $\mathrm{Y} \leq^{\mathrm{p}} \mathrm{X}$
- Does not have to be a decision problem
- Decision problem can be NP-hard but not in NP, for instance exact K-colorability
- Any K-coloring is a certificate for K-COL but not for K-COLE(exact)

