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Complexity, 
P and NP

EECS 477
Lecture 21, 11/26/2002

Last week

Lower bound arguments
– Information theoretic (12.2)

• Decision trees (sorting)
– Adversary arguments (12.3)

• Maximum of an array
• Graph connectivity
• Median
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Linear reductions

A is linearly reducible to B (A<=B)
if the existence of a O(t(n)) algorithm for 
B implies the existence of O(t(n)) 
algorithm for A
When both ways we get linear 
equivalence
– Ex: SQR and MULT

• x2 = x*x
• x*y = ((x+y)2 - (x+y)2)/4

Smoothness matters:
see the book
f(bN) = O(f(N)), 
for all integer b>=2

Polynomial vs non-polynomial

Linear reduction works for polynomial 
time algorithms
Polynomial = efficient
Distinguish efficient from the rest
– Allow polynomial reduction
– Polynomial number of polynomial-time 

operations takes polynomial time
– Versus exponential time
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Decision problems

Technically easier to handle decision 
problems
– Answer is “yes” or “no”

Example: 
– TSP

• Find the tour of the minumum cost
– TSPD: decision version

• For K, is there a tour of cost <=K
• We can verify given an example

Hamiltonian cycles

Hamiltonian path
– Goes through every node once
– Hamiltonian cycle

HAM
– Find Hamiltonian path if one exists

HAMD
– Is a given graph Hamiltonian?

• Do not have to present the path
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Complexity classes

Two classes
– P

• The class of decision problems that can be 
solved by a polynomial-time algorithm

– NP
• The class of decision problems that admit a 

proof system F⊆X×Q, poly-time algorithm A
1: (∀x∈X)(∃q∈Q) s.t. (x,q)∈F and #q≤p(#x)
2: (∀(x,q)) algorithm A can verify whether (x,q)∈F 

• Q - certificates (there are q for for “yes” 
instances x only), X - “yes” instances

In other words,

P – class of decision problems that can 
be solved by a polynomial-time 
algorithm
NP – non-deterministic polynomial time
– Given a solution, it can be checked in 

polynomial time 
• given a cycle/tour – check?
• Composite number: given a factor easy to 

check (but to find one?)
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Theorems, conjectures

Theorem: P ⊆ NP
– If we can solve a problem then we can 

surely check it
The central open question:
Is P=NP or not? 

Conjecture: P≠NP
– Look at the hardest problems in NP

• As hard as any other problem in NP

Polynomial reduction

Polynomial reductions

Two problems A and B
A ≤p B : 
– A is polynomially reducible to B
– There is an algorithm for solving A in time 

that would be polynomial if we could solve arbitrary 
instances of B in unit time

– If both ways then they are polynomially 
equivalent: A ≡p B

– Transitive: if A ≤p B and B ≤p C then A ≤p C
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Example

HAM ≡p HAMD
– HAMD ≤p HAM

• Trivial: if HAMalgo finds a cycle then yes
– HAM ≤p HAMD

• First check if HAMDalgo gives yes for the 
original graph

• Start considering edges for removal one by one
– Apply HAMDalgo to the remaining 
– If still Hamiltonian without an edge then remove it
– Otherwise remove the edge and keep going
– Stop when a cycle is left, return it

Reduction function

Two decision problems X⊆I and Y⊆J
F: map I→J
such that F(x)∈Y if and only if x∈X 
Theorem: If F is computable in polynomial 

time then X ≤p Y
• bool DecideX(x) {

y = F(x);
if(DecideY(y)) return true;
else return false;

}
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Example

HAMD ≤p TSPD
– Given a graph G=(N,A), need to see if it is 

Hamiltonian
– Define F(G) be the TSPD instance with a 

complete graph (N,N×N)
• Cost = 1 if the edge in A and 2 otherwise
• TSPD bound being N
• If TSPD yes then that is a Hamiltonian cycle
• If TSPD no then no Hamiltonian cycle

NP-completeness

Decision problem X is NP-complete
1. X is in NP
2. Y ≤p X  for every problem Y in NP
X is polynomially harder than any 
other NP problem
If we know that X is NP-complete and 
X ≤p Z then Z is NP-complete
If we could only find one such X
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SAT: satisfiability

Given a boolean formula
– Is it satisfiable? 

• is there an assignment of values to variables 
that will make it true?

• e.g. (p∧q)⇒(p∨q) is satisfiable via (p=q=true)
• No efficient algorithm known

– CNF: conjunctive normal form
• e.g. (p+q+¬r)(p+¬q+¬t)(¬p+q+¬r+t)p
• SAT-CNF satisfiability for boolean expressions 

in CNF form

Cook’s theorem

For any NP problem Y, Y ≤p SAT-CNF
– Proof: 

• Any decision problem in NP has a decision 
algorithm Ay that checks a certificate

• Ay is given by a non-deterministic one-tape 
Turing machine program

• Can construct polynomial size boolean CNF 
formula from that program

• “Formula is satisfiable” = “Instance y is in Y”
• No more details here
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Some NP-complete problems

SAT
3SAT: clauses have three variables
3DM: 3D matching
HAMD: hamiltonian circuit
PARTITION: set A and s:A→Z+

– Partition A into two equally sized parts
CLIQUE: clique of size J
VERTEX COVER: of size K
K-COL: graph colorability with K colors

NP-hard

X is NP-hard 
– if there is an NP-complete problem Y that 

can be polynomially reduced to X
• Y ≤p X

– Does not have to be a decision problem
– Decision problem can be NP-hard but not 

in NP, for instance exact K-colorability
• Any K-coloring is a certificate for K-COL but not 

for K-COLE(exact)


